Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan.
PLoS One. 2011;6(9):e23945. doi: 10.1371/journal.pone.0023945. Epub 2011 Sep 15.
Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear.
Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression.
Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment.
Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.
循环缺氧和慢性肿瘤缺氧与肿瘤的发生和生长有关。然而,循环缺氧及其分子机制对多形性胶质母细胞瘤(GBM)进展的影响尚不清楚。
在体外和体内,使胶质母细胞瘤细胞系 GBM8401 和 U87 及其异种移植物暴露于循环缺氧应激下。通过体外 ROS 分析和体内分子成像研究检测胶质母细胞瘤细胞和异种移植物中的活性氧(ROS)产生。利用 NADPH 氧化酶亚单位 4(Nox4)RNAi 敲低技术研究 Nox4 在循环缺氧介导的 ROS 产生和肿瘤进展中的作用。此外,使用携带双报告基因盒的逆转录病毒载体稳定转染胶质母细胞瘤细胞,允许体外和体内动态监测 HIF-1 信号转导和肿瘤细胞生长,使用光学和核成像。抗氧化化合物 Tempol 用于研究 ROS 对循环缺氧介导的 HIF-1 激活和肿瘤进展的影响。
在循环缺氧和常氧条件下比较胶质母细胞瘤细胞和异种移植物;在胶质母细胞瘤细胞和异种移植物中观察到循环缺氧时 NOX4 表达和 ROS 水平上调,同时体外和体内肿瘤细胞生长增加。然而,Nox4 的敲低抑制了这些作用。此外,体内分子成像研究表明 Tempol 是一种很好的抗氧化化合物,可抑制循环缺氧介导的 ROS 产生、HIF-1 激活和肿瘤生长。胶质母细胞瘤的 NOX4、HIF-1 激活和 Hoechst 3342 的免疫荧光成像和流式细胞分析也显示,高局部 NOX4 表达主要存在于具有 HIF-1 激活和内源性实体肿瘤微环境中血液灌注的潜在循环缺氧区域。
通过 Nox4 诱导的循环缺氧 ROS 是癌症生物学的一个重要方面,需要考虑针对循环缺氧促进的 HIF-1 激活和 GBM 肿瘤进展的治疗靶向。