Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
ISME J. 2012 Mar;6(3):692-702. doi: 10.1038/ismej.2011.124. Epub 2011 Sep 22.
Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
由于严重的非生物限制,南极土壤代表了简化的系统,其中微生物是营养循环的主要驱动因素。这种相对简单性使这些生态系统特别容易受到干扰,如全球变暖,而南极半岛是地球上变暖最快的地区之一。然而,南极持续变暖对微生物及其介导的过程的影响尚不清楚。在这里,我们使用 16S rRNA 基因焦磷酸测序和 qPCR,报告了在 3 年的野外实验变暖(+0.5 至 2°C)后,不同的亚南极和南极环境中的微生物群落高度一致的响应。具体来说,我们发现真菌和细菌的丰度以及α变形菌与酸杆菌的比例显著增加,这可能导致土壤呼吸增加。此外,变暖后朝着细菌群落向普遍主义的转变削弱了细菌分类和功能丰富度之间的联系。GeoChip 微阵列分析还表明,功能群落,特别是在氮循环微生物中,也受到了显著的变暖影响。我们的结果表明,一系列亚南极和南极环境中的土壤微生物可以对温度升高做出一致和迅速的反应。