Lang Di, Sulkin Matthew, Lou Qing, Efimov Igor R
Department of Biomedical Engineering, Washington University in St. Louis, USA.
J Vis Exp. 2011 Sep 13(55):3275. doi: 10.3791/3275.
The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (V(m;)), calcium transients (CaT), and other parameters. Excitation-contraction coupling is characterized by action potential and intracellular calcium dynamics; therefore, it is critically important to map both V(m;) and CaT simultaneously from the same location on the heart(1-4). Simultaneous optical mapping from Langendorff perfused mouse hearts has the potential to elucidate mechanisms underlying heart failure, arrhythmias, metabolic disease, and other heart diseases. Visualization of activation, conduction velocity, action potential duration, and other parameters at a myriad of sites cannot be achieved from cellular level investigation but is well solved by optical mapping(1,5,6). In this paper we present the instrumentation setup and experimental conditions for simultaneous optical mapping of V(m;) and CaT in mouse hearts with high spatio-temporal resolution using state-of-the-art CMOS imaging technology. Consistent optical recordings obtained with this method illustrate that simultaneous optical mapping of Langendorff perfused mouse hearts is both feasible and reliable.
由于该物种存在低成本的基因工程技术,小鼠心脏是心血管研究中常用的模型。利用针对跨膜电位(V(m;))、钙瞬变(CaT)和其他参数的各种探针进行荧光成像,可以轻松完成小鼠心脏的心血管生理表型分析。兴奋-收缩偶联的特征在于动作电位和细胞内钙动力学;因此,从心脏的同一位置同时绘制V(m;)和CaT至关重要(1-4)。从Langendorff灌注的小鼠心脏进行同步光学映射有可能阐明心力衰竭、心律失常、代谢疾病和其他心脏病的潜在机制。在细胞水平研究中无法实现对无数位点的激活、传导速度、动作电位持续时间和其他参数的可视化,但通过光学映射可以很好地解决(1,5,6)。在本文中,我们介绍了使用最先进的CMOS成像技术以高时空分辨率对小鼠心脏中的V(m;)和CaT进行同步光学映射的仪器设置和实验条件。用这种方法获得的一致光学记录表明,Langendorff灌注小鼠心脏的同步光学映射是可行且可靠的。