Suppr超能文献

载药辅料亚微米粒子的冷凝生长用于靶向高效肺部递药:CFD 预测与实验结果的比较。

Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results.

机构信息

Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Pharm Res. 2012 Mar;29(3):707-21. doi: 10.1007/s11095-011-0596-1. Epub 2011 Sep 27.

Abstract

PURPOSE

The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model.

METHODS

Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways.

RESULTS

The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6-2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract.

CONCLUSIONS

Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.

摘要

目的

本研究旨在通过体外实验和新开发的计算流体动力学(CFD)模型,研究组合药物和辅料亚微米气溶胶的吸湿性生长,以用于呼吸药物输送。

方法

使用毛细管气溶胶发生器和 Respimat 吸入器,实验性地生成亚微米级的组合药物和辅料颗粒。在设计为与气道保持一致的停留时间和热力学条件的螺旋管几何形状中,对气溶胶的吸湿性生长进行了体外评估和 CFD 预测。

结果

体外结果和 CFD 预测都表明,对于非吸湿性药物(布地奈德)和不同吸湿性赋形剂的 50:50 组合,最初的亚微米颗粒的平均粒径增加到 1.6-2.5μm 的范围。CFD 结果与体外预测的偏差在 10%以内,并突出了液滴逐渐稳定的尺寸增加,这将有效减少胸外沉积并产生深呼吸道内的沉积。

结论

增强赋形剂生长(EEG)似乎提供了一种有效增加药物气溶胶尺寸的技术,而开发的 CFD 模型将为优化该技术以产生高效肺输送提供强大的设计工具。

相似文献

3
Targeting aerosol deposition to and within the lung airways using excipient enhanced growth.
J Aerosol Med Pulm Drug Deliv. 2013 Oct;26(5):248-65. doi: 10.1089/jamp.2012.0997. Epub 2013 Jan 3.
5
Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler.
J Aerosol Med Pulm Drug Deliv. 2015 Jun;28(3):189-201. doi: 10.1089/jamp.2014.1158. Epub 2014 Sep 5.
6
Development of a High-Flow Nasal Cannula and Pharmaceutical Aerosol Combination Device.
J Aerosol Med Pulm Drug Deliv. 2019 Aug;32(4):224-241. doi: 10.1089/jamp.2018.1488. Epub 2019 Mar 11.
7
Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).
J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.
9
Aerosol Drug Delivery During Noninvasive Positive Pressure Ventilation: Effects of Intersubject Variability and Excipient Enhanced Growth.
J Aerosol Med Pulm Drug Deliv. 2017 Jun;30(3):190-205. doi: 10.1089/jamp.2016.1343. Epub 2017 Jan 11.

引用本文的文献

1
Characterization of Pediatric Extrathoracic Aerosol Deposition with Air-Jet Dry Powder Inhalers.
J Aerosol Sci. 2025 Jan;183. doi: 10.1016/j.jaerosci.2024.106474. Epub 2024 Sep 28.
2
Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery.
J Aerosol Med Pulm Drug Deliv. 2024 Aug;37(4):202-218. doi: 10.1089/jamp.2024.29117.mk.
3
A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance.
Fundam Res. 2021 Dec 2;2(4):578-587. doi: 10.1016/j.fmre.2021.11.021. eCollection 2022 Jul.
7
8
High-Efficiency Dry Powder Aerosol Delivery to Children: Review and Application of New Technologies.
J Aerosol Sci. 2021 Mar;153. doi: 10.1016/j.jaerosci.2020.105692. Epub 2020 Oct 14.
9
Humidified and Heated Cascade Impactor for Aerosol Sizing.
Front Bioeng Biotechnol. 2020 Nov 13;8:589782. doi: 10.3389/fbioe.2020.589782. eCollection 2020.
10
Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations.
Int J Pharm. 2020 Dec 15;591:120027. doi: 10.1016/j.ijpharm.2020.120027. Epub 2020 Oct 31.

本文引用的文献

1
Numerical Model to Characterize the Size Increase of Combination Drug and Hygroscopic Excipient Nanoparticle Aerosols.
Aerosol Sci Technol. 2011 Jan 1;45(7):884-899. doi: 10.1080/02786826.2011.566592.
2
Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).
J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.
5
Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth.
Aerosol Sci Technol. 2010 Jun 1;44(6):473-483. doi: 10.1080/02786821003749525.
7
Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):99-112. doi: 10.1089/jamp.2008.0708.
9
Degree of throat deposition can explain the variability in lung deposition of inhaled drugs.
J Aerosol Med. 2006 Winter;19(4):473-83. doi: 10.1089/jam.2006.19.473.
10
Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
Med Eng Phys. 2007 Apr;29(3):350-66. doi: 10.1016/j.medengphy.2006.05.012. Epub 2006 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验