Amidi Maryam, de Raad Markus, Crommelin Daan J A, Hennink Wim E, Mastrobattista Enrico
Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.
Syst Synth Biol. 2011 Jun;5(1-2):21-31. doi: 10.1007/s11693-010-9066-z. Epub 2010 Oct 26.
Liposomes are versatile (sub)micron-sized membrane vesicles that can be used for a variety of applications, including drug delivery and in vivo imaging but they also represent excellent models for artificial membranes or cells. Several studies have demonstrated that in vitro transcription and translation can take place inside liposomes to obtain compartmentalized production of functional proteins within the liposomes (Kita et al. in Chembiochem 9(15):2403-2410, 2008; Moritani et al.in FEBS J, 2010; Kuruma et al. in Methods Mol Biol 607:161-171, 2010; Murtas et al. in Biochem Biophys Res Commun 363(1):12-17, 2007; Sunami et al. in Anal Biochem 357(1):128-136, 2006; Ishikawa et al. in FEBS Lett 576(3):387-390, 2004; Oberholzer et al. in Biochem Biophys Res Commun 261(2):238-241, 1999). Such a minimal artificial cell-based model is ideal for synthetic biology based applications. In this study, we propose the use of liposomes as artificial microbes for vaccination. These artificial microbes can be genetically programmed to produce specific antigens at will. To show proof-of-concept for this artificial cell-based platform, a bacterial in vitro transcription and translation system together with a gene construct encoding the model antigen β-galactosidase were entrapped inside multilamellar liposomes. Vaccination studies in mice showed that such antigen-expressing immunostimulatory liposomes (AnExILs) elicited higher specific humoral immune responses against the produced antigen (β-galactosidase) than control vaccines (i.e. AnExILs without genetic input, liposomal β-galactosidase or pDNA encoding β-galactosidase). In conclusion, AnExILs present a new platform for DNA-based vaccines which combines antigen production, adjuvanticity and delivery in one system and which offer several advantages over existing vaccine formulations.
脂质体是多功能的(亚)微米级膜泡,可用于多种应用,包括药物递送和体内成像,但它们也是人工膜或细胞的优秀模型。多项研究表明,体外转录和翻译可在脂质体内进行,以在脂质体内实现功能蛋白的区室化生产(北田等人,《化学生物化学》9(15):2403 - 2410, 2008;森谷等人,《欧洲生物化学学会联合会杂志》,2010;仓马等人,《分子生物学方法》607:161 - 171, 2010;穆尔塔斯等人,《生物化学与生物物理研究通讯》363(1):12 - 17, 2007;砂波美等人,《分析生物化学》357(1):128 - 136, 2006;石川等人,《欧洲生物化学学会联合会快报》576(3):387 - 390, 2004;奥伯霍尔泽等人,《生物化学与生物物理研究通讯》261(2):238 - 241, 1999)。这种基于最小人工细胞的模型对于基于合成生物学的应用来说是理想的。在本研究中,我们提议将脂质体用作疫苗接种的人工微生物。这些人工微生物可以通过基因编程随意产生特定抗原。为了证明这个基于人工细胞的平台的概念,将细菌体外转录和翻译系统以及编码模型抗原β - 半乳糖苷酶的基因构建体包裹在多层脂质体内。在小鼠身上进行的疫苗接种研究表明,这种表达抗原的免疫刺激脂质体(AnExILs)比对照疫苗(即没有基因输入的AnExILs、脂质体β - 半乳糖苷酶或编码β - 半乳糖苷酶的pDNA)引发了针对所产生抗原(β - 半乳糖苷酶)的更高特异性体液免疫反应。总之,AnExILs为基于DNA的疫苗提供了一个新平台,该平台在一个系统中结合了抗原生产、佐剂性和递送功能,并且相对于现有的疫苗制剂具有多个优势。