Chen Kang, Tjandra Nico
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Top Curr Chem. 2012;326:47-67. doi: 10.1007/128_2011_215.
The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a nonisotropic orientation, through a direct or indirect magnetic field alignment, of the protein in solution. There has been recent progress in the developments of alignment methods to allow the measurement of RDC and of methods to analyze the resulting data. In this chapter we briefly go through the mathematical expressions for the RDC and common descriptions of the alignment tensor, which may be represented using either Saupe order or the principal order matrix. Then we review the latest developments in alignment media. In particular we looked at the lipid-compatible media that allow the measurement of RDCs for membrane proteins. Other methods including conservative surface residue mutation have been invented to obtain up to five orthogonal alignment tensors that provide a potential for de novo structure and dynamics study using RDCs exclusively. We then discuss approximations assumed in RDC interpretations and different views on dynamics uncovered from the RDC method. In addition to routine usage of RDCs in refining a single structure, novel applications such as ensemble refinement against RDCs have been implemented to represent protein structure and dynamics in solution. The RDC application also extends to the study of protein-substrate interaction as well as to solving quaternary structure of oligomer in equilibrium with a monomer, opening an avenue for RDCs in high-order protein structure determination.
十多年前,蛋白质核磁共振波谱中残余偶极耦合(RDC)的发展已成为精确测定蛋白质溶液结构的一种有用且几乎常规的工具。RDC在一个共同参考系内提供磁偶极 - 偶极相互作用矢量的取向信息。其测量需要通过溶液中蛋白质的直接或间接磁场排列实现非各向同性取向。最近在排列方法的发展以允许测量RDC以及分析所得数据的方法方面取得了进展。在本章中,我们简要介绍RDC的数学表达式以及排列张量的常见描述,排列张量可以用索普序或主序矩阵表示。然后我们回顾排列介质的最新发展。特别地,我们着眼于允许测量膜蛋白RDC的脂质兼容介质。已经发明了包括保守表面残基突变在内的其他方法来获得多达五个正交排列张量,这为仅使用RDC进行从头结构和动力学研究提供了可能性。然后我们讨论RDC解释中所假设的近似以及从RDC方法中揭示的关于动力学的不同观点。除了在完善单一结构中常规使用RDC外,还实施了诸如针对RDC进行系综优化等新应用来表示溶液中的蛋白质结构和动力学。RDC的应用还扩展到蛋白质 - 底物相互作用的研究以及解决与单体处于平衡状态的寡聚体的四级结构,为RDC在高阶蛋白质结构测定中开辟了道路。