Suppr超能文献

连接组蛋白核小体结合亲和力对染色质展开机制的影响。

The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms.

机构信息

Department of Chemistry, New York University, New York, New York, USA.

出版信息

Biophys J. 2011 Oct 5;101(7):1670-80. doi: 10.1016/j.bpj.2011.07.044.

Abstract

Eukaryotic gene activation requires selective unfolding of the chromatin fiber to access the DNA for processes such as DNA transcription, replication, and repair. Mutation/modification experiments of linker histone (LH) H1 suggest the importance of dynamic mechanisms for LH binding/dissociation, but the effects on chromatin's unfolding pathway remain unclear. Here we investigate the stretching response of chromatin fibers by mesoscale modeling to complement single-molecule experiments, and present various unfolding mechanisms for fibers with different nucleosome repeat lengths (NRLs) with/without LH that are fixed to their cores or bind/unbind dynamically with different affinities. Fiber softening occurs for long compared to short NRL (due to facile stacking rearrangements), dynamic compared to static LH/core binding as well as slow rather than fast dynamic LH rebinding (due to DNA stem destabilization), and low compared to high LH concentration (due to DNA stem inhibition). Heterogeneous superbead constructs--nucleosome clusters interspersed with extended fiber regions--emerge during unfolding of medium-NRL fibers and may be related to those observed experimentally. Our work suggests that fast and slow LH binding pools, present simultaneously in vivo, might act cooperatively to yield controlled fiber unfolding at low forces. Medium-NRL fibers with multiple dynamic LH pools offer both flexibility and selective DNA exposure, and may be evolutionarily suitable to regulate chromatin architecture and gene expression.

摘要

真核基因的激活需要选择性地展开染色质纤维,以便进行 DNA 转录、复制和修复等过程。连接组蛋白 (LH) H1 的突变/修饰实验表明,LH 结合/解离的动态机制很重要,但对染色质展开途径的影响仍不清楚。在这里,我们通过介观建模研究了染色质纤维的拉伸响应,以补充单分子实验,并提出了不同核小体重复长度 (NRL) 的纤维的各种展开机制,这些纤维带有/不带有以不同亲和力固定在核心上或动态结合/解结合的 LH。与短 NRL 相比,长 NRL 的纤维软化(由于易于堆积重排),与静态 LH/core 结合相比,动态 LH/core 结合的纤维软化(由于 DNA 茎不稳定),以及与快速动态 LH 再结合相比,慢速动态 LH 再结合的纤维软化(由于 DNA 茎抑制),以及与高 LH 浓度相比,低 LH 浓度的纤维软化(由于 DNA 茎抑制)。在中 NRL 纤维展开过程中出现了异质超珠构建体--核小体簇与延伸纤维区域相间--这可能与实验中观察到的情况有关。我们的工作表明,体内同时存在的快速和慢速 LH 结合池可能协同作用,以在低力下控制纤维展开。具有多个动态 LH 池的中 NRL 纤维提供了灵活性和选择性的 DNA 暴露,并且可能在进化上适合调节染色质结构和基因表达。

相似文献

1
The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms.
Biophys J. 2011 Oct 5;101(7):1670-80. doi: 10.1016/j.bpj.2011.07.044.
2
Modeling studies of chromatin fiber structure as a function of DNA linker length.
J Mol Biol. 2010 Nov 12;403(5):777-802. doi: 10.1016/j.jmb.2010.07.057. Epub 2010 Aug 13.
3
Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8061-6. doi: 10.1073/pnas.1315872111. Epub 2014 May 20.
4
Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
Nucleic Acids Res. 2019 Jun 4;47(10):4948-4957. doi: 10.1093/nar/gkz234.
6
Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
J Biol Chem. 2017 Oct 20;292(42):17506-17513. doi: 10.1074/jbc.M117.791830. Epub 2017 Aug 30.
7
Linker histones incorporation maintains chromatin fiber plasticity.
Biophys J. 2011 Jun 8;100(11):2726-35. doi: 10.1016/j.bpj.2011.03.064.
8
Nucleosome Clutches are Regulated by Chromatin Internal Parameters.
J Mol Biol. 2021 Mar 19;433(6):166701. doi: 10.1016/j.jmb.2020.11.001. Epub 2020 Nov 9.
9
Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
J Phys Chem B. 2017 Aug 24;121(33):7823-7832. doi: 10.1021/acs.jpcb.7b04917. Epub 2017 Aug 11.
10
Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
Biophys J. 2016 Jun 7;110(11):2309-2319. doi: 10.1016/j.bpj.2016.04.024.

引用本文的文献

1
Regulation of chromatin architecture by protein binding: insights from molecular modeling.
Biophys Rev. 2024 May 9;16(3):331-343. doi: 10.1007/s12551-024-01195-5. eCollection 2024 Jun.
2
Chromatin transitions triggered by LH density as epigenetic regulators of the genome.
Nucleic Acids Res. 2022 Oct 14;50(18):10328-10342. doi: 10.1093/nar/gkac757.
3
Chromatin fiber breaks into clutches under tension and crowding.
Nucleic Acids Res. 2022 Sep 23;50(17):9738-9747. doi: 10.1093/nar/gkac725.
4
Bridging chromatin structure and function over a range of experimental spatial and temporal scales by molecular modeling.
Wiley Interdiscip Rev Comput Mol Sci. 2020 Mar-Apr;10(2). doi: 10.1002/wcms.1434. Epub 2019 Aug 6.
5
Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR.
Curr Opin Struct Biol. 2019 Apr;55:104-113. doi: 10.1016/j.sbi.2019.03.004. Epub 2019 May 21.
6
Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
Nucleic Acids Res. 2019 Jun 4;47(10):4948-4957. doi: 10.1093/nar/gkz234.
7
Rigid Basepair Monte Carlo Simulations of One-Start and Two-Start Chromatin Fiber Unfolding by Force.
Biophys J. 2018 Nov 20;115(10):1848-1859. doi: 10.1016/j.bpj.2018.10.007. Epub 2018 Oct 11.
8
Transfer-matrix calculations of the effects of tension and torque constraints on DNA-protein interactions.
Nucleic Acids Res. 2018 Jul 27;46(13):6504-6527. doi: 10.1093/nar/gky478.
9
Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
J Phys Chem B. 2017 Aug 24;121(33):7823-7832. doi: 10.1021/acs.jpcb.7b04917. Epub 2017 Aug 11.
10
Linking Chromatin Fibers to Gene Folding by Hierarchical Looping.
Biophys J. 2017 Feb 7;112(3):434-445. doi: 10.1016/j.bpj.2017.01.003. Epub 2017 Jan 31.

本文引用的文献

1
Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
Mol Cell Biol. 2011 Jun;31(11):2341-8. doi: 10.1128/MCB.05145-11. Epub 2011 Apr 4.
2
Revisiting the central dogma one molecule at a time.
Cell. 2011 Feb 18;144(4):480-97. doi: 10.1016/j.cell.2011.01.033.
3
Modeling studies of chromatin fiber structure as a function of DNA linker length.
J Mol Biol. 2010 Nov 12;403(5):777-802. doi: 10.1016/j.jmb.2010.07.057. Epub 2010 Aug 13.
4
Chromatin fiber dynamics under tension and torsion.
Int J Mol Sci. 2010 Apr 12;11(4):1557-79. doi: 10.3390/ijms11041557.
5
Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis.
EMBO J. 2010 Apr 7;29(7):1225-34. doi: 10.1038/emboj.2010.24. Epub 2010 Mar 11.
6
Mesoscale simulations of two nucleosome-repeat length oligonucleosomes.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10729-37. doi: 10.1039/b918629h. Epub 2009 Oct 20.
7
10 years of tension on chromatin: results from single molecule force spectroscopy.
Curr Pharm Biotechnol. 2009 Aug;10(5):474-85. doi: 10.2174/138920109788922128.
8
Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22. doi: 10.1073/pnas.0903280106. Epub 2009 Jul 27.
9
Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.
Nat Struct Mol Biol. 2009 May;16(5):534-40. doi: 10.1038/nsmb.1590. Epub 2009 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验