Offroy Marc, Moreau Myriam, Sobanska Sophie, Milanfar Peyman, Duponchel Ludovic
LASIR CNRS UMR 8516, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France.
Department of Electrical Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064 USA.
Sci Rep. 2015 Jul 23;5:12303. doi: 10.1038/srep12303.
The increasing interest in nanoscience in many research fields like physics, chemistry, and biology, including the environmental fate of the produced nano-objects, requires instrumental improvements to address the sub-micrometric analysis challenges. The originality of our approach is to use both the super-resolution concept and multivariate curve resolution (MCR-ALS) algorithm in confocal Raman imaging to surmount its instrumental limits and to characterize chemical components of atmospheric aerosols at the level of the individual particles. We demonstrate the possibility to go beyond the diffraction limit with this algorithmic approach. Indeed, the spatial resolution is improved by 65% to achieve 200 nm for the considered far-field spectrophotometer. A multivariate curve resolution method is then coupled with super-resolution in order to explore the heterogeneous structure of submicron particles for describing physical and chemical processes that may occur in the atmosphere. The proposed methodology provides new tools for sub-micron characterization of heterogeneous samples using far-field (i.e. conventional) Raman imaging spectrometer.
在许多研究领域,如物理、化学和生物学,对纳米科学的兴趣与日俱增,这包括所产生的纳米物体在环境中的归宿,这就需要改进仪器以应对亚微米分析挑战。我们方法的独特之处在于在共焦拉曼成像中同时使用超分辨率概念和多元曲线分辨(MCR - ALS)算法,以克服其仪器限制,并在单个颗粒层面表征大气气溶胶的化学成分。我们证明了通过这种算法方法超越衍射极限的可能性。事实上,对于所考虑的远场分光光度计,空间分辨率提高了65%,达到200纳米。然后将多元曲线分辨方法与超分辨率相结合,以探索亚微米颗粒的异质结构,从而描述可能在大气中发生的物理和化学过程。所提出的方法为使用远场(即传统)拉曼成像光谱仪对异质样品进行亚微米表征提供了新工具。