Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA.
Neuroimage. 2012 Feb 1;59(3):2330-8. doi: 10.1016/j.neuroimage.2011.09.023. Epub 2011 Sep 22.
Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment--the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group.
从结构磁共振图像中识别大脑区域之间的相互作用是计算神经解剖学面临的主要挑战之一。我们提出了一种贝叶斯数据挖掘方法来检测人类大脑的纵向形态变化。我们的方法使用动态贝叶斯网络来表示不断发展的区域间相关性。动态贝叶斯网络建模的主要优点是它可以表示时间过程之间的复杂相互作用。我们通过分析模拟萎缩研究验证了我们的方法,发现这种方法只需要少量样本就可以检测到真实的时间模型。我们进一步将动态贝叶斯网络建模应用于正常衰老和轻度认知障碍的纵向研究——巴尔的摩纵向衰老研究。我们发现,轻度认知障碍组的区域体积变化率之间的相互作用与正常衰老组不同。