Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.
Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
J Neurotrauma. 2021 Sep 15;38(18):2514-2529. doi: 10.1089/neu.2019.6762. Epub 2020 Apr 1.
Recent biomarker innovations hold potential for transforming diagnosis, prognostic modeling, and precision therapeutic targeting of traumatic brain injury (TBI). However, many biomarkers, including brain imaging, genomics, and proteomics, involve vast quantities of high-throughput and high-content data. Management, curation, analysis, and evidence synthesis of these data are not trivial tasks. In this review, we discuss data management concepts and statistical and data sharing strategies when dealing with biomarker data in the context of TBI research. We propose that application of biomarkers involves three distinct steps-discovery, evaluation, and evidence synthesis. First, complex/big data has to be reduced to useful data elements at the stage of biomarker discovery. Second, inferential statistical approaches must be applied to these biomarker data elements for assessment of biomarker clinical utility and validity. Last, synthesis of relevant research is required to support practice guidelines and enable health decisions informed by the highest quality, up-to-date evidence available. We focus our discussion around recent experiences from the International Traumatic Brain Injury Research (InTBIR) initiative, with a specific focus on four major clinical projects (Transforming Research and Clinical Knowledge in TBI, Collaborative European NeuroTrauma Effectiveness Research in TBI, Collaborative Research on Acute Traumatic Brain Injury in Intensive Care Medicine in Europe, and Approaches and Decisions in Acute Pediatric TBI Trial), which are currently enrolling subjects in North America and Europe. We discuss common data elements, data collection efforts, data-sharing opportunities, and challenges, as well as examine the statistical techniques required to realize successful adoption and use of biomarkers in the clinic as a foundation for precision medicine in TBI.
最近的生物标志物创新有可能改变创伤性脑损伤 (TBI) 的诊断、预后建模和精准治疗靶向。然而,许多生物标志物,包括脑成像、基因组学和蛋白质组学,都涉及大量的高通量和高内涵数据。管理、策展、分析和证据综合这些数据并不是一件简单的任务。在这篇综述中,我们讨论了在 TBI 研究中处理生物标志物数据时的数据管理概念和统计数据共享策略。我们提出,应用生物标志物涉及三个不同的步骤 - 发现、评估和证据综合。首先,在生物标志物发现阶段,必须将复杂/大数据减少为有用的数据元素。其次,必须将推断统计方法应用于这些生物标志物数据元素,以评估生物标志物的临床效用和有效性。最后,需要综合相关研究,以支持实践指南,并根据现有最新、最高质量的证据做出健康决策。我们的讨论重点是国际创伤性脑损伤研究 (InTBIR) 倡议的最新经验,特别是四个主要的临床项目(转化研究和临床知识在 TBI 中的应用、欧洲神经创伤有效性研究协作、欧洲重症监护医学急性创伤性脑损伤协作研究以及急性儿科 TBI 试验中的方法和决策),这些项目目前正在北美和欧洲招募受试者。我们讨论了常见的数据元素、数据收集工作、数据共享机会和挑战,以及检查了成功采用和使用生物标志物在临床上作为 TBI 精准医学基础所需的统计技术。
J Neurotrauma. 2021-9-15
J Neurotrauma. 2021-9-15
Curr Opin Neurol. 2018-12
Bioengineering (Basel). 2025-3-14
Biomolecules. 2024-2-4
Diagnostics (Basel). 2023-10-28
Neuropsychiatr Dis Treat. 2018-11-8
BMJ. 2018-7-30
Lancet Neurol. 2018-9
Neuroimage Clin. 2017-10-2
JAMA. 2018-2-13