Suppr超能文献

功能磁共振成像数据的离散动态贝叶斯网络分析

Discrete dynamic Bayesian network analysis of fMRI data.

作者信息

Burge John, Lane Terran, Link Hamilton, Qiu Shibin, Clark Vincent P

机构信息

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-1161, USA.

出版信息

Hum Brain Mapp. 2009 Jan;30(1):122-37. doi: 10.1002/hbm.20490.

Abstract

We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data-driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects (Buckner, et al., 2000: J Cogn Neurosci 12:24-34) and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave-one-out cross-validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine-learning classifiers: the support vector machine and the Gaussian naive Bayesian network. We also verify that the dDBN selects correlates based on non-linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed.

摘要

我们研究了使用离散动态贝叶斯网络(dDBNs)(一种机器学习中采用的数据驱动建模技术)来识别感兴趣的神经解剖区域之间功能相关性的功效。与许多神经成像分析技术不同,该方法不受线性和/或高斯噪声假设的限制。它通过将神经解剖区域的时间序列建模为离散的,而不是具有多项分布的连续随机变量来实现这一点。我们使用从健康和患有痴呆症的老年受试者收集的功能磁共振成像(fMRI)数据集(Buckner等人,2000年:《认知神经科学杂志》12:24 - 34)来演示此方法,并基于痴呆症诊断识别相关性。结果通过三种方式进行验证。首先,所引出的相关性在留一法交叉验证中显示出稳健性,并且通过傅里叶自举法表明它们不太可能是由于随机因素造成的。其次,dDBNs识别出的相关性与实验范式预期的一致。第三,dDBN预测痴呆症的能力与两种常用的机器学习分类器具有竞争力:支持向量机和高斯朴素贝叶斯网络。我们还验证了dDBN基于非线性标准选择相关性。最后,我们对从Buckner等人的数据中引出的相关性进行了简要分析,结果表明与健康老年人相比,患有痴呆症的老年受试者在大脑活动中内嗅皮层和枕叶皮层的参与度降低,而顶叶和杏仁核的参与度增加(通过血氧水平依赖(BOLD)测量之间的功能相关性来衡量)。讨论了dDBN方法的局限性和扩展。

相似文献

1
Discrete dynamic Bayesian network analysis of fMRI data.
Hum Brain Mapp. 2009 Jan;30(1):122-37. doi: 10.1002/hbm.20490.
3
Model-free group analysis shows altered BOLD FMRI networks in dementia.
Hum Brain Mapp. 2009 Jan;30(1):256-66. doi: 10.1002/hbm.20505.
4
Improved brain effective connectivity modelling by dynamic Bayesian networks.
J Neurosci Methods. 2024 Sep;409:110211. doi: 10.1016/j.jneumeth.2024.110211. Epub 2024 Jul 3.
5
Probabilistic framework for brain connectivity from functional MR images.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.
6
Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
Neuroimage. 2018 Jun;173:72-87. doi: 10.1016/j.neuroimage.2018.02.004. Epub 2018 Feb 13.
7
Network discovery with DCM.
Neuroimage. 2011 Jun 1;56(3):1202-21. doi: 10.1016/j.neuroimage.2010.12.039. Epub 2010 Dec 21.
8
Integrated local correlation: a new measure of local coherence in fMRI data.
Hum Brain Mapp. 2009 Jan;30(1):13-23. doi: 10.1002/hbm.20482.
9
A Bayesian framework for global tractography.
Neuroimage. 2007 Aug 1;37(1):116-29. doi: 10.1016/j.neuroimage.2007.04.039. Epub 2007 Apr 27.

引用本文的文献

2
Amalgamating evidence of dynamics.
Synthese. 2019 Aug;196(8):3213-3230. doi: 10.1007/s11229-017-1568-8. Epub 2017 Sep 18.
3
The acceptability and feasibility of a novel virtual reality based social skills training game for schizophrenia: Preliminary findings.
Psychiatry Res. 2018 Dec;270:496-502. doi: 10.1016/j.psychres.2018.10.014. Epub 2018 Oct 9.
4
Estimation of effective connectivity using multi-layer perceptron artificial neural network.
Cogn Neurodyn. 2018 Feb;12(1):21-42. doi: 10.1007/s11571-017-9453-1. Epub 2017 Sep 16.
6
Understanding the complex relationships underlying hot flashes: a Bayesian network approach.
Menopause. 2018 Feb;25(2):182-190. doi: 10.1097/GME.0000000000000959.
8
Smoothness and Structure Learning by Proxy.
Proc Int Conf Mach Learn. 2012;2012:1663-1670.
9
Measuring Asymmetric Interactions in Resting State Brain Networks.
Inf Process Med Imaging. 2015;24:399-410. doi: 10.1007/978-3-319-19992-4_31.
10
Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach.
Front Comput Neurosci. 2014 Nov 26;8:156. doi: 10.3389/fncom.2014.00156. eCollection 2014.

本文引用的文献

1
Computational inference of neural information flow networks.
PLoS Comput Biol. 2006 Nov 24;2(11):e161. doi: 10.1371/journal.pcbi.0020161. Epub 2006 Oct 12.
2
A Bayesian approach to modeling dynamic effective connectivity with fMRI data.
Neuroimage. 2006 Apr 15;30(3):794-812. doi: 10.1016/j.neuroimage.2005.10.019. Epub 2005 Dec 20.
3
A Bayesian approach to determining connectivity of the human brain.
Hum Brain Mapp. 2006 Mar;27(3):267-76. doi: 10.1002/hbm.20182.
4
Models of brain function in neuroimaging.
Annu Rev Psychol. 2005;56:57-87. doi: 10.1146/annurev.psych.56.091103.070311.
5
The development of social behavior following neonatal amygdala lesions in rhesus monkeys.
J Cogn Neurosci. 2004 Oct;16(8):1388-411. doi: 10.1162/0898929042304741.
6
Modelling functional integration: a comparison of structural equation and dynamic causal models.
Neuroimage. 2004;23 Suppl 1:S264-74. doi: 10.1016/j.neuroimage.2004.07.041.
7
Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage. 2004;23 Suppl 1:S208-19. doi: 10.1016/j.neuroimage.2004.07.051.
8
Spatiotemporal wavelet resampling for functional neuroimaging data.
Hum Brain Mapp. 2004 Sep;23(1):1-25. doi: 10.1002/hbm.20045.
10
The human amygdala: an evolved system for relevance detection.
Rev Neurosci. 2003;14(4):303-16. doi: 10.1515/revneuro.2003.14.4.303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验