Suppr超能文献

附着对液体烃类的好氧生物降解和生物修复的影响。

Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.

机构信息

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.

出版信息

Appl Microbiol Biotechnol. 2011 Nov;92(4):653-75. doi: 10.1007/s00253-011-3589-4. Epub 2011 Oct 1.

Abstract

Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.

摘要

疏水性液体烃类的生物降解通常受到微生物对底物的低可用性的限制。微生物对油水界面的附着可以提高这种可用性,而从界面上分离细胞会降低生物降解的速度。微生物附着在界面上的能力不仅限于烃类降解菌,也不是使烃类快速吸收的唯一机制,但它代表了一种常见的策略。对文献的综述表明,微生物的附着可以促进生长和非常疏水性烃类的生物降解,如溶解在非水相中的正烷烃和大的多环芳烃。当烃类不乳化时,两种液相之间的界面面积有限,因此附着尤为重要。当混合群落参与生物降解时,细胞附着在界面上的能力可以使选择性生长,并随着时间的推移增强生物修复。理解附着细菌的生长速率与生物降解速率之间关系的关键挑战是准确测量和观察栖息在烃相界面的种群。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验