Suppr超能文献

蛋白质的氧化还原感应:半胱氨酸的氧化修饰及其后续事件。

Redox sensing by proteins: oxidative modifications on cysteines and the consequent events.

机构信息

Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Antioxid Redox Signal. 2012 Apr 1;16(7):649-57. doi: 10.1089/ars.2011.4313. Epub 2011 Dec 19.

Abstract

SIGNIFICANCE

Reactive oxygen species (ROS) are not only essential for the cell's normal functions, but also mediate many pathological effects. When cells experience oxidative stress, proteins are modulated by redox changes and ultimately generate novel signaling patterns. It remains elusive how proteins are modulated, rather than simply damaged, by ROS and then mediate the diverse cellular responses.

RECENT ADVANCES

During the past decade, researchers frequently used "redox sensor" for proteins. However, the term "redox sensing" has not been clearly defined to date. Thiols of cysteines are subjected to oxidative modifications. The conformation changes and the various types of post-translational modifications (PTMs) may result from thiol oxidation of the same protein or other proteins. The molecular effects of redox sensing include changes in protein activity, abundance, localization, and interaction with other biomacromolecules.

CRITICAL ISSUES

We discuss the emerging concept of cysteine-based redox sensing, emphasizing "sensing redox changes by proteins using their thiols." ROS are an input, and the conformation changes and/or the other PTMs after thiol oxidation are the output of redox sensing. Among dozens of redox sensing proteins listed in this article, SENP3 and caspase-9, which have been investigated in our work, are given particular attention. We also introduce the notion of biphasic and compartment-specific redox sensing by nuclear factor kappa B.

FUTURE DIRECTIONS

Understanding chemical modifications and conformational changes following protein redox sensing requires more studies in mass spectrometry and crystallography. Redox-indicative probes in live cells and tissues will help monitor redox-related biological and pathological progresses.

摘要

意义

活性氧 (ROS) 不仅是细胞正常功能所必需的,而且还介导许多病理效应。当细胞经历氧化应激时,蛋白质会被氧化还原变化调节,最终产生新的信号模式。ROS 如何调节蛋白质,而不是简单地损伤蛋白质,然后介导细胞的各种反应,目前仍不清楚。

最新进展

在过去的十年中,研究人员经常使用“氧化还原传感器”来研究蛋白质。然而,到目前为止,“氧化还原感应”一词还没有被明确定义。半胱氨酸的巯基容易发生氧化修饰。构象变化和各种类型的翻译后修饰(PTMs)可能来自同一蛋白质或其他蛋白质的巯基氧化。氧化还原感应的分子效应包括蛋白质活性、丰度、定位和与其他生物大分子相互作用的变化。

关键问题

我们讨论了基于半胱氨酸的氧化还原感应的新兴概念,强调“蛋白质利用其巯基感应氧化还原变化”。ROS 是一个输入,而巯基氧化后的构象变化和/或其他 PTMs 是氧化还原感应的输出。在本文列出的数十种氧化还原感应蛋白中,我们特别关注 SENP3 和 caspase-9,这两种蛋白是我们工作中研究过的。我们还介绍了核因子 kappa B 的双相和区室特异性氧化还原感应的概念。

未来方向

理解蛋白质氧化还原感应后的化学修饰和构象变化需要更多的质谱和晶体学研究。活细胞和组织中的氧化还原指示探针将有助于监测与氧化还原相关的生物学和病理学进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验