Suppr超能文献

相似文献

1
Chemical Probes for Redox Signaling and Oxidative Stress.
Antioxid Redox Signal. 2019 Apr 1;30(10):1369-1386. doi: 10.1089/ars.2017.7408. Epub 2017 Dec 22.
2
Redox sensing by proteins: oxidative modifications on cysteines and the consequent events.
Antioxid Redox Signal. 2012 Apr 1;16(7):649-57. doi: 10.1089/ars.2011.4313. Epub 2011 Dec 19.
3
Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
Methods Mol Biol. 2017;1558:191-212. doi: 10.1007/978-1-4939-6783-4_9.
4
Redox proteomics: from bench to bedside.
Adv Exp Med Biol. 2014;806:301-17. doi: 10.1007/978-3-319-06068-2_13.
5
Mass spectrometry and redox proteomics: applications in disease.
Mass Spectrom Rev. 2014 Jul-Aug;33(4):277-301. doi: 10.1002/mas.21374. Epub 2013 Sep 30.
7
Plant redox proteomics.
J Proteomics. 2011 Aug 12;74(8):1450-62. doi: 10.1016/j.jprot.2011.03.008. Epub 2011 Mar 23.
8
ROSics: chemistry and proteomics of cysteine modifications in redox biology.
Mass Spectrom Rev. 2015 Mar-Apr;34(2):184-208. doi: 10.1002/mas.21430. Epub 2014 Jun 10.
9
Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology.
Life Sci. 2015 May 15;129:42-7. doi: 10.1016/j.lfs.2014.11.008. Epub 2014 Nov 27.
10
Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
Mol Cell. 2021 Sep 16;81(18):3691-3707. doi: 10.1016/j.molcel.2021.08.018.

引用本文的文献

4
Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics.
JACS Au. 2023 Dec 13;3(12):3506-3523. doi: 10.1021/jacsau.3c00707. eCollection 2023 Dec 25.
5
Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics.
bioRxiv. 2023 Oct 19:2023.10.17.562832. doi: 10.1101/2023.10.17.562832.
6
Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.
Cell Chem Biol. 2023 Jul 20;30(7):811-827.e7. doi: 10.1016/j.chembiol.2023.06.008. Epub 2023 Jul 6.
8
Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings.
Antioxidants (Basel). 2023 Jan 5;12(1):131. doi: 10.3390/antiox12010131.
9
Triterpenoids as Reactive Oxygen Species Modulators of Cell Fate.
Chem Res Toxicol. 2022 Apr 18;35(4):569-584. doi: 10.1021/acs.chemrestox.1c00428. Epub 2022 Mar 21.
10
SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
Mol Cell Proteomics. 2022 Apr;21(4):100218. doi: 10.1016/j.mcpro.2022.100218. Epub 2022 Feb 25.

本文引用的文献

1
Identifying Functional Cysteine Residues in the Mitochondria.
ACS Chem Biol. 2017 Apr 21;12(4):947-957. doi: 10.1021/acschembio.6b01074. Epub 2017 Feb 15.
2
Optimization of Caged Electrophiles for Improved Monitoring of Cysteine Reactivity in Living Cells.
Chembiochem. 2017 Jan 3;18(1):81-84. doi: 10.1002/cbic.201600524. Epub 2016 Dec 5.
3
Clickable glutathione using tetrazine-alkene bioorthogonal chemistry for detecting protein glutathionylation.
Org Biomol Chem. 2016 Nov 22;14(46):10886-10893. doi: 10.1039/c6ob02050j.
4
6
Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes.
Nat Chem Biol. 2016 Jun;12(6):437-43. doi: 10.1038/nchembio.2067. Epub 2016 Apr 18.
7
A simple method for enhancing the bioorthogonality of cyclooctyne reagent.
Chem Commun (Camb). 2016 Apr 7;52(31):5451-4. doi: 10.1039/c6cc01321j.
8
Profiling the Reactivity of Cyclic C-Nucleophiles towards Electrophilic Sulfur in Cysteine Sulfenic Acid.
Chem Sci. 2016 Jan 1;7(1):400-415. doi: 10.1039/C5SC02569A. Epub 2015 Oct 7.
9
Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications.
J Am Chem Soc. 2016 Feb 17;138(6):1852-9. doi: 10.1021/jacs.5b06806. Epub 2016 Feb 5.
10
HyPer Family Probes: State of the Art.
Antioxid Redox Signal. 2016 May 1;24(13):731-51. doi: 10.1089/ars.2015.6586. Epub 2016 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验