Department of Electrical and Computer Engineering, University of Toronto , 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
ACS Nano. 2013 Sep 24;7(9):7680-8. doi: 10.1021/nn4021983. Epub 2013 Aug 12.
Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.
胶体量子点(CQD)固体由于其低成本的溶液处理方法、高吸收截面以及通过量子尺寸效应实现的带隙可调谐性,是用于光伏器件的有吸引力的材料。最近 CQD 太阳能电池性能的进展依赖于新的表面钝化策略。具体而言,已证明 PbS CQD 表面硫属元素位置上的镉阳离子钝化有助于降低陷光态密度并提高光伏性能。在这里,我们采用广义的溶液相钝化策略来改善 CQD 表面管理。我们研究了金属阳离子对溶液相表面钝化、薄膜相中陷光态密度、少子迁移率和光伏功率转换效率的影响。我们表明,陷阱钝化和带隙中陷光态密度决定了光伏器件的性能,并且强烈受到金属阳离子选择的影响。通过密度泛函理论模拟,我们提出了一个关于阳离子作用的模型,该模型表明,即使在亚单层量的情况下,提供最浅电子亲和能和表面键合构型最大适应性的金属阳离子也能有效地消除深陷阱和浅陷阱。这项工作说明了在设计用于优化 CQD 器件性能的灵活钝化策略时,材料选择的重要性。