Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany.
J Phys Chem B. 2011 Nov 10;115(44):13093-100. doi: 10.1021/jp208166w. Epub 2011 Oct 18.
Double-stranded DNA oligomers containing 23 alternating adenine-thymine base pairs are studied at different hydration levels by femtosecond two-dimensional (2D) infrared spectrosopy. Coupled NH stretching modes of the A-T pairs and OH stretching excitations of the water shell are discerned in the 2D spectra. Limited changes of NH stretching frequencies and line shapes with increasing hydration suggest spectral dynamics governed by DNA rather than water fluctuations. In contrast, OH stretching excitations of the water shell around fully hydrated DNA undergo spectral diffusion on a ~500 fs time scale. The center line slopes of the 2D spectra of hydrated DNA demonstrate a slower decay of the frequency-time correlation function (TCF) than that in neat water, as is evident from a comparison with 2D spectra of neat H(2)O and theoretical TCFs. We attribute this behavior to reduced structural fluctuations of the water shell and a reduced rate of resonant OH stretching energy transfer.
双链 DNA 寡聚体含有 23 个交替的腺嘌呤-胸腺嘧啶碱基对,通过飞秒二维(2D)红外光谱法在不同水合水平下进行研究。在 2D 光谱中可以分辨出 A-T 对的耦合 NH 伸缩模式和水壳的 OH 伸缩激发。随着水合度的增加,NH 伸缩频率和线形的变化有限,表明由 DNA 而不是水的波动控制光谱动力学。相比之下,完全水合 DNA 周围水壳的 OH 伸缩激发在~500 fs 的时间尺度上经历光谱扩散。水合 DNA 的 2D 光谱的中心线斜率表明,与纯净水中的 2D 光谱和理论 TCF 相比,频率-时间相关函数(TCF)的衰减速度较慢。我们将这种行为归因于水壳结构波动的减小和共振 OH 伸缩能量转移速率的降低。