Tros Martijn, Zheng Linli, Hunger Johannes, Bonn Mischa, Bonn Daniel, Smits Gertien J, Woutersen Sander
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
Nat Commun. 2017 Oct 12;8(1):904. doi: 10.1038/s41467-017-00858-0.
Cells are extremely crowded, and a central question in biology is how this affects the intracellular water. Here, we use ultrafast vibrational spectroscopy and dielectric-relaxation spectroscopy to observe the random orientational motion of water molecules inside living cells of three prototypical organisms: Escherichia coli, Saccharomyces cerevisiae (yeast), and spores of Bacillus subtilis. In all three organisms, most of the intracellular water exhibits the same random orientational motion as neat water (characteristic time constants ~9 and ~2 ps for the first-order and second-order orientational correlation functions), whereas a smaller fraction exhibits slower orientational dynamics. The fraction of slow intracellular water varies between organisms, ranging from ~20% in E. coli to ~45% in B. subtilis spores. Comparison with the water dynamics observed in solutions mimicking the chemical composition of (parts of) the cytosol shows that the slow water is bound mostly to proteins, and to a lesser extent to other biomolecules and ions.The cytoplasm's crowdedness leads one to expect that cell water is different from bulk water. By measuring the rotational motion of water molecules in living cells, Tros et al. find that apart from a small fraction of water solvating biomolecules, cell water has the same dynamics as bulk water.
细胞内极其拥挤,生物学中的一个核心问题是这如何影响细胞内的水。在此,我们使用超快振动光谱和介电弛豫光谱来观察三种典型生物体活细胞内水分子的随机取向运动:大肠杆菌、酿酒酵母(酵母)和枯草芽孢杆菌的孢子。在这三种生物体中,大多数细胞内的水表现出与纯水相同的随机取向运动(一阶和二阶取向相关函数的特征时间常数分别约为9皮秒和2皮秒),而较小部分表现出较慢的取向动力学。缓慢的细胞内水的比例在不同生物体之间有所不同,从大肠杆菌中的约20%到枯草芽孢杆菌孢子中的约45%不等。与在模拟(部分)细胞质化学成分的溶液中观察到的水动力学进行比较表明,缓慢的水主要与蛋白质结合,在较小程度上与其他生物分子和离子结合。细胞质的拥挤状况让人预期细胞内的水与体相水不同。通过测量活细胞中水分子的旋转运动,特罗斯等人发现,除了一小部分溶剂化生物分子的水之外,细胞内的水与体相水具有相同的动力学。