Suppr超能文献

PROTS:基于片段的蛋白质热稳定性势能。

PROTS: a fragment based protein thermo-stability potential.

机构信息

Applied Bioinformatics Laboratory, the University of Kansas, Lawrence, Kansas 66047, USA.

出版信息

Proteins. 2012 Jan;80(1):81-92. doi: 10.1002/prot.23163. Epub 2011 Oct 5.

Abstract

Designing proteins with enhanced thermo-stability has been a main focus of protein engineering because of its theoretical and practical significance. Despite extensive studies in the past years, a general strategy for stabilizing proteins still remains elusive. Thus effective and robust computational algorithms for designing thermo-stable proteins are in critical demand. Here we report PROTS, a sequential and structural four-residue fragment based protein thermo-stability potential. PROTS is derived from a nonredundant representative collection of thousands of thermophilic and mesophilic protein structures and a large set of point mutations with experimentally determined changes of melting temperatures. To the best of our knowledge, PROTS is the first protein stability predictor based on integrated analysis and mining of these two types of data. Besides conventional cross validation and blind testing, we introduce hypothetical reverse mutations as a means of testing the robustness of protein thermo-stability predictors. In all tests, PROTS demonstrates the ability to reliably predict mutation induced thermo-stability changes as well as classify thermophilic and mesophilic proteins. In addition, this white-box predictor allows easy interpretation of the factors that influence mutation induced protein stability changes at the residue level.

摘要

设计具有增强热稳定性的蛋白质一直是蛋白质工程的主要关注点,因为它具有理论和实际意义。尽管在过去的几年中进行了广泛的研究,但稳定蛋白质的一般策略仍然难以捉摸。因此,设计热稳定蛋白质的有效和强大的计算算法是非常需要的。在这里,我们报告了 PROTS,这是一种基于顺序和结构的四残基片段的蛋白质热稳定性势能。PROTS 源自数千个嗜热和嗜中性蛋白质结构的非冗余代表性集合,以及大量具有实验确定的熔点变化的点突变。据我们所知,PROTS 是第一个基于这两种类型数据的综合分析和挖掘的蛋白质稳定性预测器。除了传统的交叉验证和盲测之外,我们还引入了假设的反向突变作为测试蛋白质热稳定性预测器稳健性的一种手段。在所有测试中,PROTS 都能够可靠地预测突变引起的热稳定性变化,并对嗜热和嗜中性蛋白质进行分类。此外,这个白盒预测器允许在残基水平上轻松解释影响突变诱导蛋白质稳定性变化的因素。

相似文献

1
PROTS: a fragment based protein thermo-stability potential.
Proteins. 2012 Jan;80(1):81-92. doi: 10.1002/prot.23163. Epub 2011 Oct 5.
2
PROTS-RF: a robust model for predicting mutation-induced protein stability changes.
PLoS One. 2012;7(10):e47247. doi: 10.1371/journal.pone.0047247. Epub 2012 Oct 15.
5
ProtDataTherm: A database for thermostability analysis and engineering of proteins.
PLoS One. 2018 Jan 29;13(1):e0191222. doi: 10.1371/journal.pone.0191222. eCollection 2018.
6
The linear interaction energy method for the prediction of protein stability changes upon mutation.
Proteins. 2012 Jan;80(1):111-25. doi: 10.1002/prot.23168. Epub 2011 Oct 31.
7
An in silico method for designing thermostable variant of a dimeric mesophilic protein based on its 3D structure.
J Mol Graph Model. 2013 May;42:92-103. doi: 10.1016/j.jmgm.2013.02.011. Epub 2013 Mar 21.
8
Computational tools help improve protein stability but with a solubility tradeoff.
J Biol Chem. 2017 Sep 1;292(35):14349-14361. doi: 10.1074/jbc.M117.784165. Epub 2017 Jul 14.
9
Prediction of thermophilic proteins using feature selection technique.
J Microbiol Methods. 2011 Jan;84(1):67-70. doi: 10.1016/j.mimet.2010.10.013. Epub 2010 Oct 31.
10
Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase.
J Biomol Struct Dyn. 2000 Dec;18(3):477-91. doi: 10.1080/07391102.2000.10506682.

引用本文的文献

1
DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning.
Nucleic Acids Res. 2024 Jul 5;52(W1):W207-W214. doi: 10.1093/nar/gkae412.
2
The role of data imbalance bias in the prediction of protein stability change upon mutation.
PLoS One. 2023 Mar 30;18(3):e0283727. doi: 10.1371/journal.pone.0283727. eCollection 2023.
3
Enabling QTY Server for Designing Water-Soluble α-Helical Transmembrane Proteins.
mBio. 2022 Feb 22;13(1):e0360421. doi: 10.1128/mbio.03604-21. Epub 2022 Jan 18.
4
Robust Prediction of Single and Multiple Point Protein Mutations Stability Changes.
Biomolecules. 2019 Dec 31;10(1):67. doi: 10.3390/biom10010067.
9
SDM: a server for predicting effects of mutations on protein stability.
Nucleic Acids Res. 2017 Jul 3;45(W1):W229-W235. doi: 10.1093/nar/gkx439.
10
Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice.
J Pharm Sci. 2016 May;105(5):1603-1613. doi: 10.1016/j.xphs.2016.02.009. Epub 2016 Mar 15.

本文引用的文献

1
Distance-dependent statistical potentials for discriminating thermophilic and mesophilic proteins.
Biochem Biophys Res Commun. 2010 Jun 4;396(3):736-41. doi: 10.1016/j.bbrc.2010.05.005. Epub 2010 May 6.
3
I-TASSER: fully automated protein structure prediction in CASP8.
Proteins. 2009;77 Suppl 9(Suppl 9):100-13. doi: 10.1002/prot.22588.
4
Protein structure prediction center in CASP8.
Proteins. 2009;77 Suppl 9(Suppl 9):5-9. doi: 10.1002/prot.22517.
5
Sequence-based analysis of protein energy landscapes reveals nonuniform thermal adaptation within the proteome.
Mol Biol Evol. 2009 Oct;26(10):2217-27. doi: 10.1093/molbev/msp140. Epub 2009 Jul 10.
6
Design of therapeutic proteins with enhanced stability.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11937-42. doi: 10.1073/pnas.0904191106. Epub 2009 Jul 1.
7
Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
Protein Eng Des Sel. 2009 Sep;22(9):553-60. doi: 10.1093/protein/gzp030. Epub 2009 Jun 26.
8
Reliable prediction of protein thermostability change upon double mutation from amino acid sequence.
Bioinformatics. 2009 Sep 1;25(17):2181-7. doi: 10.1093/bioinformatics/btp370. Epub 2009 Jun 17.
9
Protein structure prediction: when is it useful?
Curr Opin Struct Biol. 2009 Apr;19(2):145-55. doi: 10.1016/j.sbi.2009.02.005. Epub 2009 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验