Suppr超能文献

DDMut-PPI:基于图的深度学习预测突变对蛋白质-蛋白质相互作用的影响。

DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning.

机构信息

The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia.

Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.

出版信息

Nucleic Acids Res. 2024 Jul 5;52(W1):W207-W214. doi: 10.1093/nar/gkae412.

Abstract

Protein-protein interactions (PPIs) play a vital role in cellular functions and are essential for therapeutic development and understanding diseases. However, current predictive tools often struggle to balance efficiency and precision in predicting the effects of mutations on these complex interactions. To address this, we present DDMut-PPI, a deep learning model that efficiently and accurately predicts changes in PPI binding free energy upon single and multiple point mutations. Building on the robust Siamese network architecture with graph-based signatures from our prior work, DDMut, the DDMut-PPI model was enhanced with a graph convolutional network operated on the protein interaction interface. We used residue-specific embeddings from ProtT5 protein language model as node features, and a variety of molecular interactions as edge features. By integrating evolutionary context with spatial information, this framework enables DDMut-PPI to achieve a robust Pearson correlation of up to 0.75 (root mean squared error: 1.33 kcal/mol) in our evaluations, outperforming most existing methods. Importantly, the model demonstrated consistent performance across mutations that increase or decrease binding affinity. DDMut-PPI offers a significant advancement in the field and will serve as a valuable tool for researchers probing the complexities of protein interactions. DDMut-PPI is freely available as a web server and an application programming interface at https://biosig.lab.uq.edu.au/ddmut_ppi.

摘要

蛋白质-蛋白质相互作用(PPIs)在细胞功能中起着至关重要的作用,对于治疗开发和疾病理解至关重要。然而,当前的预测工具在平衡预测突变对这些复杂相互作用的影响的效率和精度方面常常遇到困难。为了解决这个问题,我们提出了 DDMut-PPI,这是一种深度学习模型,能够高效准确地预测单点和多点突变对 PPI 结合自由能的影响。DDMut-PPI 模型建立在我们之前工作的基于图的签名的稳健 Siamese 网络架构上,并使用 ProtT5 蛋白质语言模型的残基特定嵌入作为节点特征,以及各种分子相互作用作为边特征进行了增强。通过将进化背景与空间信息集成,该框架使 DDMut-PPI 能够在我们的评估中实现高达 0.75 的稳健 Pearson 相关系数(均方根误差:1.33 kcal/mol),优于大多数现有方法。重要的是,该模型在增加或降低结合亲和力的突变中表现出一致的性能。DDMut-PPI 在该领域取得了重大进展,将成为研究人员探索蛋白质相互作用复杂性的有价值的工具。DDMut-PPI 可作为网络服务器在 https://biosig.lab.uq.edu.au/ddmut_ppi 上免费获取,也可作为应用程序编程接口获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb3/11223791/5e6941fb44fd/gkae412figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验