Department of Plant Physiology, University of Rostock, D-18051 Rostock, Germany.
Plant Physiol. 2011 Dec;157(4):1711-20. doi: 10.1104/pp.111.184564. Epub 2011 Oct 5.
Serine hydroxymethyltransferases (SHMs) are important enzymes of cellular one-carbon metabolism and are essential for the photorespiratory glycine-into-serine conversion in leaf mesophyll mitochondria. In Arabidopsis (Arabidopsis thaliana), SHM1 has been identified as the photorespiratory isozyme, but little is known about the very similar SHM2. Although the mitochondrial location of SHM2 can be predicted, some data suggest that this particular isozyme could be inactive or not targeted into mitochondria. We report that SHM2 is a functional mitochondrial SHM. In leaves, the presequence of SHM2 selectively hinders targeting of the enzyme into mesophyll mitochondria. For this reason, the enzyme is confined to the vascular tissue of wild-type Arabidopsis, likely the protoxylem and/or adjacent cells, where it occurs together with SHM1. The resulting exclusion of SHM2 from the photorespiratory environment of mesophyll mitochondria explains why this enzyme cannot substitute for SHM1 in photorespiratory metabolism. Unlike the individual shm1 and shm2 null mutants, which require CO(2)-enriched air to inhibit photorespiration (shm1) or do not show any visible impairment (shm2), double-null mutants cannot survive in CO(2)-enriched air. It seems that SHM1 and SHM2 operate in a redundant manner in one-carbon metabolism of nonphotorespiring cells with a high demand of one-carbon units; for example, during lignification of vascular cells. We hypothesize that yet unknown kinetic properties of SHM2 might render this enzyme unsuitable for the high-folate conditions of photorespiring mesophyll mitochondria.
丝氨酸羟甲基转移酶(SHMs)是细胞一碳代谢的重要酶,对于叶片质体线粒体中的光呼吸甘氨酸转化为丝氨酸至关重要。在拟南芥(Arabidopsis thaliana)中,SHM1 已被鉴定为光呼吸同工酶,但对非常相似的 SHM2 知之甚少。尽管可以预测 SHM2 的线粒体位置,但一些数据表明该同工酶可能不起作用或未靶向进入线粒体。我们报告 SHM2 是一种功能性的线粒体 SHM。在叶片中,SHM2 的前导序列选择性地阻止了酶靶向质体线粒体。出于这个原因,该酶局限于野生型拟南芥的维管束组织,可能是原木质部和/或相邻细胞,在那里它与 SHM1 一起存在。SHM2 从质体线粒体的光呼吸环境中排除,这解释了为什么该酶不能替代光呼吸代谢中的 SHM1。与单个 shm1 和 shm2 缺失突变体不同,它们需要富含 CO2 的空气来抑制光呼吸(shm1)或没有任何明显损伤(shm2),双缺失突变体不能在富含 CO2 的空气中存活。似乎 SHM1 和 SHM2 在需要一碳单位的非光呼吸细胞的一碳代谢中以冗余方式发挥作用;例如,在血管细胞的木质化过程中。我们假设 SHM2 未知的动力学特性可能使其不适合光呼吸质体线粒体中高叶酸的条件。