Suppr超能文献

采用定量氧化还原蛋白质组学方法剖析酵母氧化还原组。

Using quantitative redox proteomics to dissect the yeast redoxome.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.

出版信息

J Biol Chem. 2011 Dec 2;286(48):41893-41903. doi: 10.1074/jbc.M111.296236. Epub 2011 Oct 5.

Abstract

To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.

摘要

为了理解并最终预测氧化还原条件和氧化剂水平变化对生物体生理学的影响,了解其氧化还原组学至关重要:氧化还原组学是指那些其半胱氨酸巯基的氧化状态控制其活性的蛋白质。在这里,我们应用定量氧化还原蛋白质组学方法 OxICAT 对酿酒酵母进行了研究,并确定了分布在各种细胞区室中的近 300 种不同酵母蛋白的体内巯基氧化状态。我们发现,大量的细胞质和线粒体蛋白在指数生长期会发生部分氧化。我们的研究结果表明,普遍的氧化还原条件通过微调这些蛋白质的氧化状态和活性,从而持续控制着核心细胞通路。用亚致死浓度的 H2O2 处理会导致 41 种蛋白质中的一部分发生大量的巯基修饰,从而影响多种不同的细胞通路,其中许多通路直接或间接地参与增强氧化应激抗性。根据其稳态氧化水平和对过氧化物处理的敏感性对鉴定出的蛋白质巯基进行分类,表明蛋白质巯基的氧化还原敏感性并不能预测过氧化物的敏感性。我们的研究提供了实验证据,表明蛋白质巯基对变化的过氧化物水平的反应能力可能受到热力学和动力学参数的共同控制,这使得预测巯基修饰具有挑战性,并且新鉴定的过氧化物敏感的蛋白质巯基是不可或缺的。

相似文献

1
Using quantitative redox proteomics to dissect the yeast redoxome.
J Biol Chem. 2011 Dec 2;286(48):41893-41903. doi: 10.1074/jbc.M111.296236. Epub 2011 Oct 5.
3
The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
J Biol Chem. 2006 Apr 14;281(15):10420-30. doi: 10.1074/jbc.M513346200. Epub 2006 Jan 17.
4
Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction.
Redox Biol. 2019 Feb;21:101087. doi: 10.1016/j.redox.2018.101087. Epub 2018 Dec 19.
6
7
Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases.
J Biol Chem. 2009 Nov 13;284(46):31532-40. doi: 10.1074/jbc.M109.059246. Epub 2009 Sep 15.
9
The oxidized thiol proteome in fission yeast--optimization of an ICAT-based method to identify H2O2-oxidized proteins.
J Proteomics. 2011 Oct 19;74(11):2476-86. doi: 10.1016/j.jprot.2011.05.030. Epub 2011 Jun 6.
10
Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
Biochimie. 2008 Oct;90(10):1476-85. doi: 10.1016/j.biochi.2008.05.013. Epub 2008 May 25.

引用本文的文献

2
Cdc48 plays a crucial role in redox homeostasis through dynamic reshaping of its interactome during early stationary phase.
Redox Biol. 2025 Jul;84:103651. doi: 10.1016/j.redox.2025.103651. Epub 2025 May 1.
6
Redox regulation of proteostasis.
J Biol Chem. 2024 Dec;300(12):107977. doi: 10.1016/j.jbc.2024.107977. Epub 2024 Nov 8.
7
Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions.
Life Sci Alliance. 2024 Feb 21;7(5). doi: 10.26508/lsa.202302300. Print 2024 May.
9
Systematic Evaluation of Protein-Small Molecule Hybrids on the Yeast Surface.
ACS Chem Biol. 2024 Feb 16;19(2):325-335. doi: 10.1021/acschembio.3c00524. Epub 2024 Jan 17.
10
Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics.
JACS Au. 2023 Dec 13;3(12):3506-3523. doi: 10.1021/jacsau.3c00707. eCollection 2023 Dec 25.

本文引用的文献

1
The oxidized thiol proteome in fission yeast--optimization of an ICAT-based method to identify H2O2-oxidized proteins.
J Proteomics. 2011 Oct 19;74(11):2476-86. doi: 10.1016/j.jprot.2011.05.030. Epub 2011 Jun 6.
2
Protein sulfenic acid formation: from cellular damage to redox regulation.
Free Radic Biol Med. 2011 Jul 15;51(2):314-26. doi: 10.1016/j.freeradbiomed.2011.04.031. Epub 2011 Apr 23.
3
The redoxome: Proteomic analysis of cellular redox networks.
Curr Opin Chem Biol. 2011 Feb;15(1):113-9. doi: 10.1016/j.cbpa.2010.11.013. Epub 2010 Dec 2.
4
Regulation of mRNA translation as a conserved mechanism of longevity control.
Adv Exp Med Biol. 2010;694:14-29. doi: 10.1007/978-1-4419-7002-2_2.
5
Control of mature protein function by allosteric disulfide bonds.
Antioxid Redox Signal. 2011 Jan 1;14(1):113-26. doi: 10.1089/ars.2010.3620. Epub 2010 Oct 28.
6
Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.
7
Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans.
Antioxid Redox Signal. 2011 Mar 15;14(6):1023-37. doi: 10.1089/ars.2010.3203. Epub 2010 Oct 28.
10
Quantifying the global cellular thiol-disulfide status.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):422-7. doi: 10.1073/pnas.0812149106. Epub 2009 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验