Suppr超能文献

氧化应激对秀丽隐杆线虫行为、生理和氧化还原硫醇蛋白质组的影响。

Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Antioxid Redox Signal. 2011 Mar 15;14(6):1023-37. doi: 10.1089/ars.2010.3203. Epub 2010 Oct 28.

Abstract

Accumulation of reactive oxygen species has been implicated in various diseases and aging. However, the precise physiological effects of accumulating oxidants are still largely undefined. Here, we applied a short-term peroxide stress treatment to young Caenorhabditis elegans and measured behavioral, physiological, and cellular consequences. We discovered that exposure to peroxide stress causes a number of immediate changes, including loss in mobility, decreased growth rate, and decreased cellular adenosine triphosphate levels. Many of these alterations, which are highly reminiscent of changes in aging animals, are reversible, suggesting the presence of effective antioxidant systems in young C. elegans. One of these antioxidant systems involves the highly abundant protein peroxiredoxin 2 (PRDX-2), whose gene deletion causes phenotypes symptomatic of chronic peroxide stress and shortens lifespan. Applying the quantitative redox proteomic technique OxICAT to oxidatively stressed wild-type and prdx-2 deletion worms, we identified oxidation-sensitive cysteines in 40 different proteins, including proteins involved in mobility and feeding (e.g., MYO-2 and LET-75), protein translation and homeostasis (e.g., elongation factor 1 [EFT-1] and heat shock protein 1), and adenosine triphosphate regeneration (e.g., nucleoside diphosphate kinase). The oxidative modification of some of these redox-sensitive cysteines may contribute to the physiological and behavioral changes observed in oxidatively stressed animals.

摘要

活性氧物质的积累与多种疾病和衰老有关。然而,积累氧化剂的确切生理影响在很大程度上仍未得到明确。在这里,我们对年轻的秀丽隐杆线虫应用了短期过氧化物应激处理,并测量了行为、生理和细胞后果。我们发现,暴露于过氧化物应激会引起许多立即发生的变化,包括运动能力丧失、生长速度下降和细胞三磷酸腺苷水平下降。这些改变中的许多与衰老动物中的改变非常相似,是可逆的,这表明年轻秀丽隐杆线虫中存在有效的抗氧化系统。其中一种抗氧化系统涉及高度丰富的蛋白质过氧化物还原酶 2(PRDX-2),其基因缺失会导致类似于慢性过氧化物应激的表型,并缩短寿命。我们应用定量氧化还原蛋白质组学技术 OxICAT 对氧化应激的野生型和 prdx-2 缺失线虫进行分析,鉴定出 40 种不同蛋白质中的氧化敏感半胱氨酸,这些蛋白质涉及运动和摄食(例如肌球蛋白-2 和 LET-75)、蛋白质翻译和稳态(例如延伸因子 1 [EFT-1]和热休克蛋白 1)以及三磷酸腺苷再生(例如核苷二磷酸激酶)。这些氧化敏感半胱氨酸中的一些的氧化修饰可能有助于解释在氧化应激动物中观察到的生理和行为变化。

相似文献

1
Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans.
Antioxid Redox Signal. 2011 Mar 15;14(6):1023-37. doi: 10.1089/ars.2010.3203. Epub 2010 Oct 28.
2
Is overoxidation of peroxiredoxin physiologically significant?
Antioxid Redox Signal. 2011 Feb 15;14(4):725-30. doi: 10.1089/ars.2010.3717. Epub 2010 Dec 17.
3
A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19839-44. doi: 10.1073/pnas.0805507105. Epub 2008 Dec 8.
4
Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin?
Redox Biol. 2018 Apr;14:386-390. doi: 10.1016/j.redox.2017.10.003. Epub 2017 Oct 7.
6
Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans.
Toxicol Lett. 2015 Jun 1;235(2):75-83. doi: 10.1016/j.toxlet.2015.03.010. Epub 2015 Mar 24.
7
Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans.
Free Radic Biol Med. 2013 Oct;63:381-9. doi: 10.1016/j.freeradbiomed.2013.05.025. Epub 2013 May 28.
8
Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1.
Mol Nutr Food Res. 2014 Apr;58(4):863-74. doi: 10.1002/mnfr.201300404. Epub 2013 Nov 20.
10
Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans.
Chemosphere. 2016 May;150:632-638. doi: 10.1016/j.chemosphere.2016.01.004. Epub 2016 Jan 18.

引用本文的文献

2
Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions.
Life Sci Alliance. 2024 Feb 21;7(5). doi: 10.26508/lsa.202302300. Print 2024 May.
3
Redox regulation in lifespan determination.
J Biol Chem. 2024 Mar;300(3):105761. doi: 10.1016/j.jbc.2024.105761. Epub 2024 Feb 15.
4
From guide to guard-activation mechanism of the stress-sensing chaperone Get3.
Mol Cell. 2022 Sep 1;82(17):3226-3238.e7. doi: 10.1016/j.molcel.2022.06.015. Epub 2022 Jul 14.
6
Green tea catechins EGCG and ECG enhance the fitness and lifespan of by complex I inhibition.
Aging (Albany NY). 2021 Oct 4;13(19):22629-22648. doi: 10.18632/aging.203597.
7
Evaluation of a natural compound extracted from Dolichandrone atrovirens as a novel antioxidant agent using Caenorhabditis elegans.
PLoS One. 2021 Sep 22;16(9):e0257702. doi: 10.1371/journal.pone.0257702. eCollection 2021.
8
Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects.
Plants (Basel). 2021 Jul 15;10(7):1451. doi: 10.3390/plants10071451.
9
Over-expression of the constitutive AMPylase FIC-1(E274G) does not deplete cellular ATP pools in .
MicroPubl Biol. 2021 Jun 25;2021. doi: 10.17912/micropub.biology.000409.

本文引用的文献

1
Orchestrating redox signaling networks through regulatory cysteine switches.
ACS Chem Biol. 2010 Jan 15;5(1):47-62. doi: 10.1021/cb900258z.
2
Multiple functions of Nm23-H1 are regulated by oxido-reduction system.
PLoS One. 2009 Nov 23;4(11):e7949. doi: 10.1371/journal.pone.0007949.
3
Building ubiquitin chains: E2 enzymes at work.
Nat Rev Mol Cell Biol. 2009 Nov;10(11):755-64. doi: 10.1038/nrm2780.
4
Hot topics in aging research: protein translation, 2009.
Aging Cell. 2009 Dec;8(6):617-23. doi: 10.1111/j.1474-9726.2009.00522.x. Epub 2009 Sep 11.
5
Redox-regulated chaperones.
Biochemistry. 2009 Jun 9;48(22):4666-76. doi: 10.1021/bi9003556.
6
Functional cloning of genes that suppress oxidative stress-induced cell death: TCTP prevents hydrogen peroxide-induced cell death.
FEBS Lett. 2009 Apr 17;583(8):1363-7. doi: 10.1016/j.febslet.2009.03.045. Epub 2009 Mar 27.
7
A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19839-44. doi: 10.1073/pnas.0805507105. Epub 2008 Dec 8.
8
Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
Cell. 2008 Nov 14;135(4):691-701. doi: 10.1016/j.cell.2008.09.024.
9
Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies.
Nat Struct Mol Biol. 2008 Dec;15(12):1255-62. doi: 10.1038/nsmb.1515. Epub 2008 Nov 16.
10
Thiol-based redox switches in eukaryotic proteins.
Antioxid Redox Signal. 2009 May;11(5):997-1014. doi: 10.1089/ars.2008.2285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验