Suppr超能文献

果蝇作为个性化医疗的工具:入门指南。

Drosophila as a tool for personalized medicine: a primer.

作者信息

Kasai Yumi, Cagan Ross

机构信息

Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, NY 10029-6574, USA.

出版信息

Per Med. 2010 Nov;7(6):621-632. doi: 10.2217/pme.10.65.

Abstract

The goal of personalized medicine is to treat each patient with the best drug: optimal therapeutic benefit with minimal side effects. The genomic revolution is rapidly identifying the genetic contribution to the diseased state as well as its contribution to drug efficacy and toxicity. The ability to perform genome-wide studies has led to an overwhelming number of candidate genes and/or their associated variants; however, understanding which are of therapeutic importance is becoming the greatest unmet need in the personalized medicine field. A related issue is the need to improve our methods of identifying and characterizing therapeutic drugs in the context of the complex genomic landscape of the intact body. Drosophila have proven to be a powerful tool for understanding the basic biological mechanisms of human development. This article will review Drosophila as a whole animal tool for gene and drug discovery. We will examine how Drosophila can be used to both sort through the myriad of hits coming from human genome-wide scans and to dramatically improve the early steps in pharmaceutical drug development.

摘要

个性化医疗的目标是为每位患者使用最佳药物

实现最大治疗效益并将副作用降至最低。基因组革命正在迅速确定基因对疾病状态的影响,以及对药物疗效和毒性的影响。进行全基因组研究的能力已经产生了大量的候选基因和/或其相关变体;然而,了解哪些具有治疗重要性正成为个性化医疗领域最大的未满足需求。一个相关问题是,需要改进我们在完整机体复杂的基因组背景下识别和表征治疗药物的方法。果蝇已被证明是理解人类发育基本生物学机制的有力工具。本文将综述果蝇作为用于基因和药物发现的整体动物工具的情况。我们将研究果蝇如何用于筛选来自人类全基因组扫描的大量结果,并显著改进药物研发的早期步骤。

相似文献

1
Drosophila as a tool for personalized medicine: a primer.
Per Med. 2010 Nov;7(6):621-632. doi: 10.2217/pme.10.65.
2
Drosophila as a novel therapeutic discovery tool for thyroid cancer.
Thyroid. 2010 Jul;20(7):689-95. doi: 10.1089/thy.2010.1637.
5
: A platform for anticancer drug discovery and personalized therapies.
Front Genet. 2022 Aug 8;13:949241. doi: 10.3389/fgene.2022.949241. eCollection 2022.
8
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review.
Exp Cell Res. 2018 Dec 15;373(1-2):1-33. doi: 10.1016/j.yexcr.2018.09.011. Epub 2018 Sep 26.

引用本文的文献

1
: THE CENTURY-LONG FLIGHT FROM THE WILD TO THE PATIENT.
Med Sci Pulse. 2025 Mar 30;19(1):1-15. doi: 10.5604/01.3001.0054.9627. Epub 2025 Feb 5.
2
: A platform for anticancer drug discovery and personalized therapies.
Front Genet. 2022 Aug 8;13:949241. doi: 10.3389/fgene.2022.949241. eCollection 2022.
3
The gut-microbiota-brain axis in autism: what Drosophila models can offer?
J Neurodev Disord. 2021 Sep 15;13(1):37. doi: 10.1186/s11689-021-09378-x.
4
A Personalized Therapeutics Approach Using an Reveals Optimal Chemo- and Targeted Therapy Combinations for Colorectal Cancer.
Front Oncol. 2021 Jul 16;11:692592. doi: 10.3389/fonc.2021.692592. eCollection 2021.
6
Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease.
Int J Mol Sci. 2021 Apr 10;22(8):3918. doi: 10.3390/ijms22083918.
7
Anatomy and Neural Pathways Modulating Distinct Locomotor Behaviors in Larva.
Biology (Basel). 2021 Jan 25;10(2):90. doi: 10.3390/biology10020090.
8
Rounding up the Usual Suspects: Assessing Yorkie, AP-1, and Stat Coactivation in Tumorigenesis.
Int J Mol Sci. 2020 Jun 27;21(13):4580. doi: 10.3390/ijms21134580.
9
Tools to reverse-engineer multicellular systems: case studies using the fruit fly.
J Biol Eng. 2019 Apr 23;13:33. doi: 10.1186/s13036-019-0161-8. eCollection 2019.
10
Integrated computational and Drosophila cancer model platform captures previously unappreciated chemicals perturbing a kinase network.
PLoS Comput Biol. 2019 Apr 26;15(4):e1006878. doi: 10.1371/journal.pcbi.1006878. eCollection 2019 Apr.

本文引用的文献

1
Genomic screening with RNAi: results and challenges.
Annu Rev Biochem. 2010;79:37-64. doi: 10.1146/annurev-biochem-060408-092949.
2
SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration.
Mol Cell. 2010 Feb 12;37(3):321-32. doi: 10.1016/j.molcel.2010.01.004.
3
Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer.
J Clin Oncol. 2010 Feb 10;28(5):767-72. doi: 10.1200/JCO.2009.23.6604. Epub 2010 Jan 11.
4
A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1.
Mol Cell Biol. 2010 Jan;30(2):481-95. doi: 10.1128/MCB.00688-09. Epub 2009 Nov 16.
5
Fluorescent labeling of Drosophila heart structures.
J Vis Exp. 2009 Oct 13(32):1423. doi: 10.3791/1423.
6
Emerging role of Notch signaling in epidermal differentiation and skin cancer.
Cancer Biol Ther. 2009 Nov;8(21):1986-93. doi: 10.4161/cbt.8.21.9921. Epub 2009 Nov 26.
7
Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster.
Nat Methods. 2009 Jun;6(6):431-4. doi: 10.1038/nmeth.1331.
8
A drosophila model for EGFR-Ras and PI3K-dependent human glioma.
PLoS Genet. 2009 Feb;5(2):e1000374. doi: 10.1371/journal.pgen.1000374. Epub 2009 Feb 13.
9
Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis.
Cancer Res. 2009 Feb 15;69(4):1383-91. doi: 10.1158/0008-5472.CAN-08-3612. Epub 2009 Feb 10.
10
Notch signalling in cancer stem cells.
Clin Transl Oncol. 2009 Jan;11(1):11-9. doi: 10.1007/s12094-009-0305-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验