Suppr超能文献

基于 MALDI-TOF/TOF 和自动从头测序的未测序基因组甲藻的同源蛋白组学分析。

Homology-Driven Proteomics of Dinoflagellates with Unsequenced Genomes Using MALDI-TOF/TOF and Automated De Novo Sequencing.

机构信息

State Key Laboratory of Marine Environmental Science/Environmental Science Research Center, Xiamen University, Xiamen 361005, China.

出版信息

Evid Based Complement Alternat Med. 2011;2011:471020. doi: 10.1155/2011/471020. Epub 2011 Sep 29.

Abstract

This study developed a multilayered, gel-based, and underivatized strategy for de novo protein sequence analysis of unsequenced dinoflagellates using a MALDI-TOF/TOF mass spectrometer with the assistance of DeNovo Explorer software. MASCOT was applied as the first layer screen to identify either known or unknown proteins sharing identical peptides presented in a database. Once the confident identifications were removed after searching against the NCBInr database, the remainder was searched against the dinoflagellate expressed sequence tag database. In the last layer, those borderline and nonconfident hits were further subjected to de novo interpretation using DeNovo Explorer software. The de novo sequences passing a reliability filter were subsequently submitted to nonredundant MS-BLAST search. Using this layer identification method, 216 protein spots representing 158 unique proteins out of 220 selected protein spots from Alexandrium tamarense, a dinoflagellate with unsequenced genome, were confidently or tentatively identified by database searching. These proteins were involved in various intracellular physiological activities. This study is the first effort to develop a completely automated approach to identify proteins from unsequenced dinoflagellate databases and establishes a preliminary protein database for various physiological studies of dinoflagellates in the future.

摘要

本研究开发了一种多层、基于凝胶且未经衍生化的策略,用于使用 MALDI-TOF/TOF 质谱仪和 DeNovo Explorer 软件对未测序的甲藻进行从头蛋白质序列分析。MASCOT 被用作第一层筛选,以识别在数据库中具有相同肽段的已知或未知蛋白质。在对 NCBInr 数据库进行搜索后,去除置信度高的鉴定结果,然后对甲藻表达序列标签数据库进行搜索。在最后一层,使用 DeNovo Explorer 软件对那些边界和非置信度的命中进行从头解释。通过可靠性过滤器的从头序列随后提交到非冗余 MS-BLAST 搜索。使用这种层识别方法,从未测序基因组的甲藻亚历山大藻(Alexandrium tamarense)中选择的 220 个蛋白质斑点中的 216 个蛋白质斑点代表 158 个独特蛋白质,通过数据库搜索被确定为可信或暂定鉴定。这些蛋白质参与各种细胞内生理活动。本研究首次开发了一种完全自动化的方法,用于从未测序的甲藻数据库中鉴定蛋白质,并为未来甲藻的各种生理研究建立了初步的蛋白质数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825b/3184443/e5e0c9450bc8/ECAM2011-471020.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验