Suppr超能文献

理解高度伸展的无序蛋白质的结构集合。

Understanding the structural ensembles of a highly extended disordered protein.

作者信息

Daughdrill Gary W, Kashtanov Stepan, Stancik Amber, Hill Shannon E, Helms Gregory, Muschol Martin, Receveur-Bréchot Véronique, Ytreberg F Marty

机构信息

Department of Cell Biology, Microbiology, and Molecular, University of South Florida, Tampa, FL 33612, USA.

出版信息

Mol Biosyst. 2012 Jan;8(1):308-19. doi: 10.1039/c1mb05243h. Epub 2011 Oct 6.

Abstract

Developing a comprehensive description of the equilibrium structural ensembles for intrinsically disordered proteins (IDPs) is essential to understanding their function. The p53 transactivation domain (p53TAD) is an IDP that interacts with multiple protein partners and contains numerous phosphorylation sites. Multiple techniques were used to investigate the equilibrium structural ensemble of p53TAD in its native and chemically unfolded states. The results from these experiments show that the native state of p53TAD has dimensions similar to a classical random coil while the chemically unfolded state is more extended. To investigate the molecular properties responsible for this behavior, a novel algorithm that generates diverse and unbiased structural ensembles of IDPs was developed. This algorithm was used to generate a large pool of plausible p53TAD structures that were reweighted to identify a subset of structures with the best fit to small angle X-ray scattering data. High weight structures in the native state ensemble show features that are localized to protein binding sites and regions with high proline content. The features localized to the protein binding sites are mostly eliminated in the chemically unfolded ensemble; while, the regions with high proline content remain relatively unaffected. Data from NMR experiments support these results, showing that residues from the protein binding sites experience larger environmental changes upon unfolding by urea than regions with high proline content. This behavior is consistent with the urea-induced exposure of nonpolar and aromatic side-chains in the protein binding sites that are partially excluded from solvent in the native state ensemble.

摘要

构建对内在无序蛋白(IDP)平衡结构集合的全面描述对于理解其功能至关重要。p53反式激活结构域(p53TAD)是一种与多种蛋白质伙伴相互作用且含有众多磷酸化位点的IDP。我们使用了多种技术来研究p53TAD在其天然状态和化学去折叠状态下的平衡结构集合。这些实验结果表明,p53TAD的天然状态尺寸类似于经典的无规卷曲,而化学去折叠状态则更为伸展。为了研究导致这种行为的分子特性,我们开发了一种生成IDP多样且无偏差结构集合的新算法。该算法用于生成大量合理的p53TAD结构,并重新加权以识别与小角X射线散射数据拟合最佳的结构子集。天然状态集合中的高权重结构显示出定位于蛋白质结合位点和脯氨酸含量高的区域的特征。定位于蛋白质结合位点的特征在化学去折叠集合中大多被消除;而脯氨酸含量高的区域则相对不受影响。核磁共振实验数据支持这些结果,表明与脯氨酸含量高的区域相比,蛋白质结合位点的残基在尿素诱导的去折叠过程中经历了更大的环境变化。这种行为与天然状态集合中部分被溶剂排斥的蛋白质结合位点中非极性和芳香族侧链的尿素诱导暴露一致。

相似文献

1
Understanding the structural ensembles of a highly extended disordered protein.
Mol Biosyst. 2012 Jan;8(1):308-19. doi: 10.1039/c1mb05243h. Epub 2011 Oct 6.
2
Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
PLoS One. 2016 Jan 7;11(1):e0144284. doi: 10.1371/journal.pone.0144284. eCollection 2016.
3
Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain.
Biophys J. 2011 Sep 21;101(6):1450-8. doi: 10.1016/j.bpj.2011.08.003. Epub 2011 Sep 20.
5
Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1853-62. doi: 10.1073/pnas.1602487113. Epub 2016 Mar 14.
7
Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations.
PLoS Comput Biol. 2015 Apr 21;11(4):e1004247. doi: 10.1371/journal.pcbi.1004247. eCollection 2015 Apr.
9
Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins.
Proteins. 2013 Oct;81(10):1686-98. doi: 10.1002/prot.24303. Epub 2013 Jul 23.
10
Denatured state ensembles with the same radii of gyration can form significantly different long-range contacts.
Biochemistry. 2014 Jan 14;53(1):39-47. doi: 10.1021/bi4008337. Epub 2013 Dec 20.

引用本文的文献

1
Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins with t-Distributed Stochastic Neighbor Embedding.
J Chem Theory Comput. 2023 Jul 25;19(14):4711-4727. doi: 10.1021/acs.jctc.3c00224. Epub 2023 Jun 20.
2
Reweighting methods for elucidation of conformation ensembles of proteins.
Curr Opin Struct Biol. 2022 Dec;77:102470. doi: 10.1016/j.sbi.2022.102470. Epub 2022 Sep 29.
3
Quantitative prediction of ensemble dynamics, shapes and contact propensities of intrinsically disordered proteins.
PLoS Comput Biol. 2022 Sep 9;18(9):e1010036. doi: 10.1371/journal.pcbi.1010036. eCollection 2022 Sep.
4
Genome-wide identification and expression analysis of late embryogenesis abundant protein-encoding genes in rye (Secale cereale L.).
PLoS One. 2021 Apr 8;16(4):e0249757. doi: 10.1371/journal.pone.0249757. eCollection 2021.
5
A lowly populated, transient β-sheet structure in monomeric Aβ identified by multinuclear NMR of chemical denaturation.
Biophys Chem. 2021 Mar;270:106531. doi: 10.1016/j.bpc.2020.106531. Epub 2020 Dec 24.
6
DNP-Enhanced MAS NMR: A Tool to Snapshot Conformational Ensembles of α-Synuclein in Different States.
Biophys J. 2018 Apr 10;114(7):1614-1623. doi: 10.1016/j.bpj.2018.02.011.
7
Deciphering the "Fuzzy" Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering.
Structure. 2018 Mar 6;26(3):477-484.e4. doi: 10.1016/j.str.2018.01.010. Epub 2018 Feb 8.
8
Conditionally disordered proteins: bringing the environment back into the fold.
Cell Mol Life Sci. 2017 Sep;74(17):3149-3162. doi: 10.1007/s00018-017-2558-1. Epub 2017 Jun 8.
9
Using chemical shifts to generate structural ensembles for intrinsically disordered proteins with converged distributions of secondary structure.
Intrinsically Disord Proteins. 2015 Feb 3;3(1):e984565. doi: 10.4161/21690707.2014.984565. eCollection 2015.

本文引用的文献

1
SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions.
Structure. 2011 Jan 12;19(1):109-16. doi: 10.1016/j.str.2010.10.006.
2
Modeling intrinsically disordered proteins with bayesian statistics.
J Am Chem Soc. 2010 Oct 27;132(42):14919-27. doi: 10.1021/ja105832g.
3
NMR characterization of long-range order in intrinsically disordered proteins.
J Am Chem Soc. 2010 Jun 23;132(24):8407-18. doi: 10.1021/ja101645g.
4
Sequence determinants of compaction in intrinsically disordered proteins.
Biophys J. 2010 May 19;98(10):2383-90. doi: 10.1016/j.bpj.2010.02.006.
7
Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering.
Eur Biophys J. 2010 Apr;39(5):769-80. doi: 10.1007/s00249-009-0549-3. Epub 2009 Oct 21.
9
Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions.
Biophys J. 2009 Jul 22;97(2):590-8. doi: 10.1016/j.bpj.2009.04.045.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验