Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Structure. 2011 Jan 12;19(1):109-16. doi: 10.1016/j.str.2010.10.006.
We developed and implemented an ensemble-refinement method to study dynamic biomolecular assemblies with intrinsically disordered segments. Data from small angle X-ray scattering (SAXS) experiments and from coarse-grained molecular simulations were combined by using a maximum-entropy approach. The method was applied to CHMP3 of ESCRT-III, a protein with multiple helical domains separated by flexible linkers. Based on recent SAXS data by Lata et al. (J. Mol. Biol. 378, 818, 2008), we constructed ensembles of CHMP3 at low- and high-salt concentration to characterize its closed autoinhibited state and open active state. At low salt, helix α(5) is bound to the tip of helices α(1) and α(2), in excellent agreement with a recent crystal structure. Helix α(6) remains free in solution and does not appear to be part of the autoinhibitory complex. The simulation-based ensemble refinement is general and effectively increases the resolution of SAXS beyond shape information to atomically detailed structures.
我们开发并实施了一种集成细化方法,用于研究具有固有无序片段的动态生物分子组装体。通过最大熵方法将小角 X 射线散射(SAXS)实验和粗粒度分子模拟的数据结合起来。该方法应用于 CHMP3 蛋白,这是一种具有多个螺旋结构域的 ESCRT-III 蛋白,由柔性接头隔开。基于 Lata 等人的最新 SAXS 数据(J. Mol. Biol. 378, 818, 2008),我们构建了 CHMP3 在低盐和高盐浓度下的集合,以表征其封闭的自动抑制状态和开放的活性状态。在低盐条件下,螺旋 α(5)与螺旋 α(1)和 α(2)的末端结合,这与最近的晶体结构非常吻合。螺旋 α(6)在溶液中保持自由,似乎不是自动抑制复合物的一部分。基于模拟的集合细化是通用的,可有效地将 SAXS 的分辨率从形状信息提高到原子细节结构。