Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Department of Physics and Astronomy, Francis Marion University, Florence, SC, USA.
Phys Med Biol. 2011 Nov 7;56(21):6873-97. doi: 10.1088/0031-9155/56/21/008. Epub 2011 Oct 7.
Spongiosa in the adult human skeleton consists of three tissues-active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM(50)), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM(50) targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM(50) and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM(50) DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM(50) DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article available at http://stacks.iop.org/0031-9155/56/6873/mmedia.
成人骨骼中的松质骨由三种组织组成——活跃骨髓(AM)、不活跃骨髓(IM)和骨小梁化矿化骨(TB)。AM 被认为是评估长期白血病风险和辐射暴露后急性骨髓毒性的靶组织。总浅层骨髓(TM(50))定义为所有位于骨表面前 50 µm 内的组织,被认为是与放射性骨癌诱导相关的辐射靶组织。对于来自体外的照射源,同质松质骨的比释动能已被用作评估这两种组织吸收剂量的替代物,因为使用均匀化松质骨的计算体模无法直接进行剂量计算。最近对一名 40 岁男性尸体的微 CT 成像允许对成人骨骼许多区域的松质骨精细微观结构进行准确建模(Hough 等人,2011 年,《物理医学与生物学》,第 56 卷,第 2309-46 页)。该微观结构以及相关的质量和组织组成,用于计算源自轴骨和附肢骨部位的质子的特定吸收分数(SAF)值(Jokisch 等人,2011 年,《物理医学与生物学》,第 56 卷,第 6857-72 页)。这些质子 SAF、骨质量、组织组成和质子产生截面随后用于构建参考成年男性每个骨骼中 AM 和 TM(50) 靶区的中子剂量响应函数(DRF)。其他产生的带电粒子的比释动能条件被假设。为了进行比较,还计算了 AM、TM(50)和松质骨比释动能系数。在低入射中子能量下,AM 比释动能系数与 AM DRF 的值相关性良好,而总骨髓(TM)比释动能系数与 TM(50)DRF 的值相关性良好。在高入射中子能量下,随着骨部位内建立带电粒子平衡,所有比释动能系数和 DRF 趋于收敛。在 10 eV 到 100 MeV 的范围内,观察到比释动能系数和 DRF 之间存在显著差异。因此,建议使用 AM 比释动能系数来估计 AM DRF,使用 TM 比释动能系数来估计 10 eV 以下的 TM(50)DRF。在 10 eV 到 100 MeV 之间,应使用本研究中提供的适当的 DRF。在 100 MeV 以上,松质骨比释动能系数适用于估算骨骼组织剂量。本文的电子附录提供了每个骨骼部位随能量变化的 DRF 值,可在 http://stacks.iop.org/0031-9155/56/6873/mmedia 上获取。