Suppr超能文献

噬菌体溶素在破坏动物病原体猪链球菌形成的生物膜中的应用。

Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis.

机构信息

Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

出版信息

Appl Environ Microbiol. 2011 Dec;77(23):8272-9. doi: 10.1128/AEM.05151-11. Epub 2011 Oct 7.

Abstract

Bacterial biofilms are crucial to the pathogenesis of many important infections and are difficult to eradicate. Streptococcus suis is an important pathogen of pigs, and here the biofilm-forming ability of 32 strains of this species was determined. Significant biofilms were completely formed by 10 of the strains after 60 h of incubation, with exopolysaccharide production in the biofilm significantly higher than that in the corresponding planktonic cultures. S. suis strain SS2-4 formed a dense biofilm, as revealed by scanning electron microscopy, and in this state exhibited increased resistance to a number of antibiotics (ampicillin, amoxicillin, ciprofloxacin, kanamycin, and rifampin) compared to that of planktonic cultures. A bacteriophage lysin, designated LySMP, was used to attack biofilms alone and in combination with antibiotics and bacteriophage. The results demonstrated that the biofilms formed by S. suis, especially strains SS2-4 and SS2-H, could be dispersed by LySMP and with >80% removal compared to a biofilm reduction by treatment with either antibiotics or bacteriophage alone of less than 20%; in addition to disruption of the biofilm structure, the S. suis cells themselves were inactivated by LySMP. The efficacy of LySMP was not dose dependent, and in combination with antibiotics, it acted synergistically to maximize dispersal of the S. suis biofilm and inactivate the released cells. These data suggest that bacteriophage lysin could form part of an effective strategy to treat S. suis infections and represents a new class of antibiofilm agents.

摘要

细菌生物膜对于许多重要感染的发病机制至关重要,并且难以消除。猪链球菌是猪的重要病原体,本研究测定了该物种的 32 株的形成生物膜的能力。在孵育 60 小时后,有 10 株完全形成了明显的生物膜,生物膜中的胞外多糖产量明显高于相应的浮游培养物。扫描电子显微镜显示,猪链球菌 SS2-4 株形成了致密的生物膜,与浮游培养物相比,该状态下对多种抗生素(氨苄西林、阿莫西林、环丙沙星、卡那霉素和利福平)的耐药性增加。使用一种噬菌体溶素 LySMP 单独或与抗生素和噬菌体联合攻击生物膜。结果表明,猪链球菌形成的生物膜,尤其是 SS2-4 和 SS2-H 株,可以被 LySMP 分散,与单独使用抗生素或噬菌体处理相比,生物膜减少超过 80%;除了破坏生物膜结构外,LySMP 还使猪链球菌细胞本身失活。LySMP 的功效与剂量无关,与抗生素联合使用时,它具有协同作用,可最大限度地分散猪链球菌生物膜并使释放的细胞失活。这些数据表明,噬菌体溶素可以成为治疗猪链球菌感染的有效策略的一部分,代表了一类新的抗生物膜剂。

相似文献

1
Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis.
Appl Environ Microbiol. 2011 Dec;77(23):8272-9. doi: 10.1128/AEM.05151-11. Epub 2011 Oct 7.
2
Purified recombinant phage lysin LySMP: an extensive spectrum of lytic activity for swine streptococci.
Curr Microbiol. 2009 Jun;58(6):609-15. doi: 10.1007/s00284-009-9379-x. Epub 2009 Mar 7.
4
Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance.
Appl Environ Microbiol. 2008 Aug;74(15):4969-72. doi: 10.1128/AEM.00558-08. Epub 2008 Jun 6.
5
Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP.
Curr Microbiol. 2012 Jul;65(1):28-34. doi: 10.1007/s00284-012-0119-2. Epub 2012 Apr 17.
6
Characterisation of biofilm formation by a Streptococcus suis meningitis isolate.
Vet J. 2009 Feb;179(2):292-5. doi: 10.1016/j.tvjl.2007.09.005. Epub 2007 Oct 25.
7
Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies.
Appl Microbiol Biotechnol. 2018 Nov;102(21):9121-9129. doi: 10.1007/s00253-018-9356-z. Epub 2018 Sep 12.
9
A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection.
FEMS Microbiol Lett. 2016 Sep;363(18). doi: 10.1093/femsle/fnw186. Epub 2016 Jul 31.

引用本文的文献

2
Phage and Endolysin Therapy Against Antibiotics Resistant Bacteria: From Bench to Bedside.
MedComm (2020). 2025 Jul 13;6(7):e70280. doi: 10.1002/mco2.70280. eCollection 2025 Jul.
3
Public Health Threats Posed by Biofilms and Innovative Strategies for their Control.
Discoveries (Craiova). 2024 Dec 31;12(4):e197. doi: 10.15190/d.2024.16. eCollection 2024 Oct-Dec.
4
Isolation of phages infecting the zoonotic pathogen reveals novel structural and genomic characteristics.
bioRxiv. 2025 Jan 7:2025.01.07.631744. doi: 10.1101/2025.01.07.631744.
5
The Synergistic and Chimeric Mechanism of Bacteriophage Endolysins: Opportunities for Application in Biotherapeutics, Food, and Health Sectors.
Probiotics Antimicrob Proteins. 2025 Apr;17(2):807-831. doi: 10.1007/s12602-024-10394-1. Epub 2024 Nov 7.
6
Benefits and Challenges of Applying Bacteriophage Biocontrol in the Consumer Water Cycle.
Microorganisms. 2024 Jun 7;12(6):1163. doi: 10.3390/microorganisms12061163.
7
Bacteriophage Therapy in Companion and Farm Animals.
Antibiotics (Basel). 2024 Mar 23;13(4):294. doi: 10.3390/antibiotics13040294.
8
Efficacy and clinical potential of phage therapy in treating methicillin-resistant Staphylococcus aureus (MRSA) infections: A review.
Eur J Microbiol Immunol (Bp). 2024 Feb 2;14(1):13-25. doi: 10.1556/1886.2023.00064. Print 2024 Feb 23.
9
Phage Lysin AVPL Had Lytic Activity against in a Mouse Bacteremia Model.
Int J Mol Sci. 2023 Nov 23;24(23):16670. doi: 10.3390/ijms242316670.
10
Phage Endolysins: Advances in the World of Food Safety.
Cells. 2023 Aug 29;12(17):2169. doi: 10.3390/cells12172169.

本文引用的文献

1
Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli.
Res Microbiol. 2009 May;160(4):259-66. doi: 10.1016/j.resmic.2009.03.001. Epub 2009 Apr 5.
2
Purified recombinant phage lysin LySMP: an extensive spectrum of lytic activity for swine streptococci.
Curr Microbiol. 2009 Jun;58(6):609-15. doi: 10.1007/s00284-009-9379-x. Epub 2009 Mar 7.
3
Isolation and identification of a bacteriophage capable of infecting Streptococcus suis type 2 strains.
Vet Microbiol. 2008 Dec 10;132(3-4):340-7. doi: 10.1016/j.vetmic.2008.05.013. Epub 2008 May 18.
4
A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm.
J Microbiol Methods. 2008 Aug;74(2-3):114-8. doi: 10.1016/j.mimet.2008.03.005. Epub 2008 Mar 14.
5
Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms.
Appl Environ Microbiol. 2008 Apr;74(7):2135-43. doi: 10.1128/AEM.02304-07. Epub 2008 Feb 1.
6
Characterisation of biofilm formation by a Streptococcus suis meningitis isolate.
Vet J. 2009 Feb;179(2):292-5. doi: 10.1016/j.tvjl.2007.09.005. Epub 2007 Oct 25.
7
Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11.
J Infect Dis. 2007 Oct 15;196(8):1237-47. doi: 10.1086/521305. Epub 2007 Sep 11.
8
Dispersing biofilms with engineered enzymatic bacteriophage.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202. doi: 10.1073/pnas.0704624104. Epub 2007 Jun 25.
9
Bacteriophages: an appraisal of their role in the treatment of bacterial infections.
Int J Antimicrob Agents. 2007 Aug;30(2):118-28. doi: 10.1016/j.ijantimicag.2007.04.006. Epub 2007 Jun 12.
10
Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus.
Appl Environ Microbiol. 2007 Jan;73(1):347-52. doi: 10.1128/AEM.01616-06. Epub 2006 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验