Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
J Biol Chem. 2011 Dec 2;286(48):41636-41646. doi: 10.1074/jbc.M111.293886. Epub 2011 Oct 7.
Accumulating genome sequences have revealed the existence of a large number of conserved hypothetical proteins. Characterization of these proteins is considered essential in the elucidation of intracellular biological pathways. Our previous transcriptomic analysis suggested that, in Thermus thermophilus HB8, loss of an oxidized DNA-repairing activity leads to the up-regulation of a function-unknown gene, tthb071, which is conserved in a wide range of bacteria. Interestingly, the tthb071 gene product, TTHB071, showed a significant primary structure similarity to apurinic/apyrimidinic (AP) endonucleases, which are required for the repair of oxidized DNA. In the present study, we observed that disruption of tthb071 increases the H(2)O(2) sensitivity in T. thermophilus HB8, suggesting the involvement of tthb071 in a protection mechanism against oxidative stress. However, purified TTHB071 exhibited no AP endonuclease or DNA-binding activities, indicating that TTHB071 plays no major role in repairing oxidative DNA damage. Then we determined the three-dimensional structure of TTHB071 complexed with zinc ions by x-ray crystallography. In addition to the overall structural similarity, the zinc-binding fashion was almost identical to that of the phosphatase active site of an AP endonuclease, implying that TTHB071 possesses a phosphatase activity. Based on the structural information around the zinc-binding site, we investigated the binding of TTHB071 to 14 different compounds. As a result, TTHB071 favorably bound FMN and pyridoxal phosphate in a zinc ion-mediated manner. Our results suggest that TTHB071 protects the cell from oxidative stress, through controlling the metabolism of FMN, pyridoxal phosphate, or an analogous compound.
积累的基因组序列揭示了大量保守的假设蛋白的存在。这些蛋白质的特征被认为是阐明细胞内生物途径的关键。我们之前的转录组分析表明,在 Thermus thermophilus HB8 中,失去氧化 DNA 修复活性会导致功能未知基因 tthb071 的上调,该基因在广泛的细菌中保守。有趣的是,tthb071 基因产物 TTHB071 与脱嘌呤/脱嘧啶 (AP) 内切核酸酶表现出显著的一级结构相似性,AP 内切核酸酶是修复氧化 DNA 所必需的。在本研究中,我们观察到 tthb071 的破坏增加了 T. thermophilus HB8 对 H 2 O 2 的敏感性,表明 tthb071 参与了对抗氧化应激的保护机制。然而,纯化的 TTHB071 没有表现出 AP 内切核酸酶或 DNA 结合活性,表明 TTHB071 在修复氧化 DNA 损伤方面没有主要作用。然后,我们通过 X 射线晶体学确定了 TTHB071 与锌离子结合的三维结构。除了整体结构相似性外,锌结合方式几乎与 AP 内切核酸酶的磷酸酶活性位点相同,这表明 TTHB071 具有磷酸酶活性。基于锌结合位点周围的结构信息,我们研究了 TTHB071 与 14 种不同化合物的结合。结果表明,TTHB071 以锌离子介导的方式有利地结合 FMN 和吡哆醛磷酸。我们的结果表明,TTHB071 通过控制 FMN、吡哆醛磷酸或类似化合物的代谢来保护细胞免受氧化应激。