Herculano-Houzel Suzana, Ribeiro Pedro, Campos Leandro, Valotta da Silva Alexandre, Torres Laila B, Catania Kenneth C, Kaas Jon H
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Brain Behav Evol. 2011;78(4):302-14. doi: 10.1159/000330825. Epub 2011 Oct 7.
Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138-12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32-44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum.
在啮齿动物、灵长类动物和食虫动物等哺乳动物目中,脑容量随神经元数量的不同函数而变化。在啮齿动物中,我们之前已经表明,在从老鼠到水豚的6个物种样本中,大脑皮层、小脑和其余脑结构的大小增加速度比获得神经元的速度更快,这些结构中的神经元密度随之降低[赫库拉诺 - 侯泽尔等人:《美国国家科学院院刊》2006年;103:12138 - 12143]。仍然存在的重要问题是,一个目内的这种神经元缩放规则是否同样适用于所有相关物种,以及它们是否扩展到密切相关的分类群。在这里,我们研究另外4种啮齿动物以及与之密切相关的兔子(兔形目)是否符合先前为啮齿动物确定的缩放规则。我们报告了以与适用于灵长类动物的缩放规则直接可比的方式为每个物种的平均值获得的更新后的神经元缩放规则[加比等人:《脑行为与进化》2010年;76:32 - 44],并研究当考虑数据集中的系统发育相关性时,缩放关系是否会受到影响。我们发现,刺鼠、松鼠、草原犬鼠和兔子的大脑符合适用于先前啮齿动物样本的神经元缩放规则。包括兔子在内的新一组物种符合先前规则,这表明我们确定的细胞缩放规则一般适用于啮齿动物,可能也适用于整个啮齿动物/兔形目(Glires),但有一个显著例外:裸鼹鼠的大脑显然是个异类,其大脑皮层和小脑中的神经元数量仅约为根据其脑容量预期数量的一半。