Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
J Mol Biol. 2011 Nov 18;414(1):15-27. doi: 10.1016/j.jmb.2011.09.039. Epub 2011 Oct 1.
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5'-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t(1/2)~2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5'-triphosphate nor a 5'-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor.
冈崎片段合成完成后,滞后链复制酶必须在 0.1 秒内循环到复制叉处的下一个引物,以维持 DNA 合成的生理速率。我们测试了循环是由聚合酶遇到前一个冈崎片段的 5' 端引发的碰撞模型。通过表面等离子体共振探测,在固定化缺口模板上形成了 DNA 聚合酶 III 全酶起始复合物。起始复合物的解离半衰期约为 15 分钟。将缺口大小减小到 1 个核苷酸会使解离速率增加 2.5 倍,完全填充缺口会使解离速率再增加 3 倍(t(1/2)~2 分钟)。外源性引物模板和 ATP 进一步加速了 4 倍的解离,反应需要完全填充缺口。聚合酶下游的 5' -三磷酸或 5' -RNA 终止寡核苷酸都不能进一步加速解离。因此,缺口完成后聚合酶释放并与下游冈崎片段碰撞的速率太慢,无法支持足够的循环速率,并且可能为聚合酶释放提供备用机制,当其他循环信号缺失时。动力学测量表明,添加最后一个核苷酸填充缺口不是聚合酶释放和循环的限速步骤。在模型冈崎片段之间的缺口被填满后,观察到适度的(约 7 个核苷酸)链位移。为了确定识别缺口填充以调节复制酶与模板亲和力的蛋白质的身份,我们使用高反应性和非选择性的重氮化合物进行了光交联实验。只有α亚基发生交联,表明它是传感器。