Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
J Mol Biol. 2011 Nov 25;414(2):204-16. doi: 10.1016/j.jmb.2011.09.035. Epub 2011 Oct 1.
Actin and myosin are the two main proteins required for cell motility and muscle contraction. The structure of their strongly bound complex-rigor state-is a key for delineating the functional mechanism of actomyosin motor. Current knowledge of that complex is based on models obtained from the docking of known atomic structures of actin and myosin subfragment 1 (S1; the head and neck region of myosin) into low-resolution electron microscopy electron density maps, which precludes atomic- or side-chain-level information. Here, we use radiolytic protein footprinting for global mapping of sites across the actin molecules that are impacted directly or allosterically by myosin binding to actin filaments. Fluorescence and electron paramagnetic resonance spectroscopies and cysteine actin mutants are used for independent, residue-specific probing of S1 effects on two structural elements of actin. We identify actin residue candidates involved in S1 binding and provide experimental evidence to discriminate between the regions of hydrophobic and electrostatic interactions. Focusing on the role of the DNase I binding loop (D-loop) and the W-loop residues of actin in their interactions with S1, we found that the emission properties of acrylodan and the mobility of electron paramagnetic resonance spin labels attached to cysteine mutants of these residues change strongly and in a residue-specific manner upon S1 binding, consistent with the recently proposed direct contacts of these loops with S1. As documented in this study, the direct and indirect changes on actin induced by myosin are more extensive than known until now and attest to the importance of actin dynamics to actomyosin function.
肌动蛋白和肌球蛋白是细胞运动和肌肉收缩所必需的两种主要蛋白质。它们强结合复合物(僵硬状态)的结构是描绘肌球蛋白运动肌动球蛋白机制的功能的关键。目前对该复合物的了解是基于将肌动蛋白和肌球蛋白亚基 1(S1;肌球蛋白的头部和颈部区域)的已知原子结构对接入低分辨率电子显微镜电子密度图中获得的模型,这排除了原子或侧链级别的信息。在这里,我们使用辐射蛋白足迹法对肌球蛋白结合到肌动蛋白丝上直接或变构影响肌动蛋白分子上的位点进行全局映射。荧光和电子顺磁共振波谱以及半胱氨酸肌动蛋白突变体用于独立的、残基特异性探测 S1 对肌动蛋白两个结构元素的影响。我们确定了涉及 S1 结合的肌动蛋白残基候选物,并提供了实验证据来区分疏水区和静电相互作用的区域。我们专注于 DNase I 结合环(D 环)和肌动蛋白的 W 环残基在与 S1 相互作用中的作用,发现丙烯酰胺的发射特性和附着在这些残基的半胱氨酸突变体上的电子顺磁共振自旋标记的迁移率在 S1 结合时发生强烈且具有残基特异性的变化,与最近提出的这些环与 S1 的直接接触一致。正如本研究所述,肌球蛋白诱导的肌动蛋白的直接和间接变化比目前已知的更为广泛,证明了肌动蛋白动力学对肌球蛋白功能的重要性。