Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California at Los Angeles, CA 90095, USA.
J Mol Biol. 2010 Jan 22;395(3):544-57. doi: 10.1016/j.jmb.2009.11.001. Epub 2009 Nov 6.
The conformational dynamics of filamentous actin (F-actin) is essential for the regulation and functions of cellular actin networks. The main contribution to F-actin dynamics and its multiple conformational states arises from the mobility and flexibility of the DNase I binding loop (D-loop; residues 40-50) on subdomain 2. Therefore, we explored the structural constraints on D-loop plasticity at the F-actin interprotomer space by probing its dynamic interactions with the hydrophobic loop (H-loop), the C-terminus, and the W-loop via mutational disulfide cross-linking. To this end, residues of the D-loop were mutated to cysteines on yeast actin with a C374A background. These mutants showed no major changes in their polymerization and nucleotide exchange properties compared to wild-type actin. Copper-catalyzed disulfide cross-linking was investigated in equimolar copolymers of cysteine mutants from the D-loop with either wild-type (C374) actin or mutant S265C/C374A (on the H-loop) or mutant F169C/C374A (on the W-loop). Remarkably, all tested residues of the D-loop could be cross-linked to residues 374, 265, and 169 by disulfide bonds, demonstrating the plasticity of the interprotomer region. However, each cross-link resulted in different effects on the filament structure, as detected by electron microscopy and light-scattering measurements. Disulfide cross-linking in the longitudinal orientation produced mostly no visible changes in filament morphology, whereas the cross-linking of D-loop residues >45 to the H-loop, in the lateral direction, resulted in filament disruption and the presence of amorphous aggregates on electron microscopy images. A similar aggregation was also observed upon cross-linking the residues of the D-loop (>41) to residue 169. The effects of disulfide cross-links on F-actin stability were only partially accounted for by the simulations of current F-actin models. Thus, our results present evidence for the high level of conformational plasticity in the interprotomer space and document the link between D-loop interactions and F-actin stability.
丝状肌动蛋白(F-actin)的构象动力学对于细胞肌动蛋白网络的调节和功能至关重要。DNase I 结合环(D-环;残基 40-50)在亚结构域 2 上的流动性和灵活性是 F-actin 动力学及其多种构象状态的主要贡献者。因此,我们通过突变二硫键交联来探测 D-环与疏水性环(H-环)、C 末端和 W-环之间的动态相互作用,探索 F-actin 互变体空间中 D-环塑性的结构限制。为此,我们将 D-环的残基突变为酵母肌动蛋白 C374A 背景下的半胱氨酸。与野生型肌动蛋白相比,这些突变体在聚合和核苷酸交换特性方面没有发生重大变化。在等摩尔比例的半胱氨酸突变体共聚物中,我们研究了来自 D-环的铜催化二硫键交联,这些共聚物要么是野生型(C374)肌动蛋白,要么是突变体 S265C/C374A(在 H-环上)或突变体 F169C/C374A(在 W-环上)。值得注意的是,通过二硫键交联,可以将 D-环的所有测试残基交联到残基 374、265 和 169 上,这表明互变体区域具有可塑性。然而,电子显微镜和光散射测量检测到,每种交联都对丝状结构产生了不同的影响。纵向取向的二硫键交联对丝状形态几乎没有产生可见的变化,而 D-环残基>45 与 H-环的横向交联导致丝状结构破坏,并在电子显微镜图像上出现无定形聚集体。在 D-环(>41)残基与残基 169 交联时也观察到类似的聚集。二硫键交联对 F-actin 稳定性的影响仅部分由当前 F-actin 模型的模拟解释。因此,我们的研究结果为互变体空间中构象的高可塑性提供了证据,并证明了 D-环相互作用与 F-actin 稳定性之间的联系。