Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK.
Analyst. 2011 Dec 7;136(23):4950-9. doi: 10.1039/c1an15717e. Epub 2011 Oct 11.
Approaches that allow one to rapidly understand tissue structure and functionality in situ remain to be developed. Such techniques are required in many instances, including where there is a need to remove with a high degree of confidence positive tumour margins during surgical excision. As biological tissue has little contrast, gold standard confirmation of surgical margins is conventionally undertaken by histopathological diagnosis of tissue architecture via optical microscopy. Vibrational spectroscopy techniques, when coupled to sophisticated computational analyses, are capable of constructing bio-molecular contrast images of unstained tissue. To assess the relative applicability of a range of candidate algorithms to distinguish the in situ bio-molecular structures of a complex tissue, the empty modelling approach of multivariate curve resolution-alternating least squares (MCR-ALS) was compared to hierarchical cluster analysis (HCA) or principal component analysis (PCA). Such chemometric analyses were applied to Raman images of benign (tumour-adjacent) endometrium, stage I and stage II endometrioid cancer. Re-constructed images from the in situ bio-molecular tissue architectures highlighted features associated with glandular epithelium, stroma, glandular lumen and myometrium. Of the tested chemometric analyses, MCR-ALS provided the best bio-molecular contrast images, superior to those derived following HCA or PCA, with clear and defined margins of histological features. Iteratively-resolved spectra identified wavenumbers responsible for the contrast image. Wavenumbers 1234 cm(-1) (Amide III), 1390 cm(-1) (CH(3) bend), 1675 cm(-1) (Amide I/lipid), 1275 cm(-1) (Amide III), 918 cm(-1) (proline) and 936 cm(-1) (proline, valine and proteins) were responsible for generating the majority of the contrast within MCR-ALS-generated images. Applications of sophisticated computational analyses coupled with vibrational spectroscopy techniques have the potential to lend novel functionality insights into bio-molecular structures in vivo.
目前仍需要开发能使人们快速原位了解组织结构和功能的方法。在许多情况下都需要这种技术,例如在需要高度自信地切除手术切除时去除肿瘤阳性边缘的情况下。由于生物组织对比度低,组织架构的光学显微镜组织病理学诊断通常被认为是手术切缘的金标准。当与复杂的计算分析相结合时,振动光谱技术能够构建未染色组织的生物分子对比图像。为了评估一系列候选算法区分复杂组织原位生物分子结构的相对适用性,采用多变量曲线分辨交替最小二乘法(MCR-ALS)的空建模方法与层次聚类分析(HCA)或主成分分析(PCA)进行了比较。对良性(肿瘤邻近)子宫内膜、I 期和 II 期子宫内膜样癌的拉曼图像进行了这种化学计量分析。来自原位生物分子组织架构的重构图像突出了与腺体上皮、基质、腺体腔和子宫肌层相关的特征。在所测试的化学计量分析中,MCR-ALS 提供了最佳的生物分子对比图像,优于 HCA 或 PCA 衍生的图像,具有清晰和明确的组织学特征边界。迭代解析的光谱确定了对比图像的波数。波数 1234 cm(-1)(酰胺 III)、1390 cm(-1)(CH(3)弯曲)、1675 cm(-1)(酰胺 I/脂质)、1275 cm(-1)(酰胺 III)、918 cm(-1)(脯氨酸)和 936 cm(-1)(脯氨酸、缬氨酸和蛋白质)负责产生 MCR-ALS 生成图像中的大部分对比度。复杂计算分析与振动光谱技术的结合应用有可能为生物分子结构提供新的功能见解。