Suppr超能文献

低同源性蛋白质穿线。

Low-homology protein threading.

机构信息

Toyota Technological Institute at Chicago, IL 60637, USA.

出版信息

Bioinformatics. 2010 Jun 15;26(12):i294-300. doi: 10.1093/bioinformatics/btq192.

Abstract

MOTIVATION

The challenge of template-based modeling lies in the recognition of correct templates and generation of accurate sequence-template alignments. Homologous information has proved to be very powerful in detecting remote homologs, as demonstrated by the state-of-the-art profile-based method HHpred. However, HHpred does not fare well when proteins under consideration are low-homology. A protein is low-homology if we cannot obtain sufficient amount of homologous information for it from existing protein sequence databases.

RESULTS

We present a profile-entropy dependent scoring function for low-homology protein threading. This method will model correlation among various protein features and determine their relative importance according to the amount of homologous information available. When proteins under consideration are low-homology, our method will rely more on structure information; otherwise, homologous information. Experimental results indicate that our threading method greatly outperforms the best profile-based method HHpred and all the top CASP8 servers on low-homology proteins. Tested on the CASP8 hard targets, our threading method is also better than all the top CASP8 servers but slightly worse than Zhang-Server. This is significant considering that Zhang-Server and other top CASP8 servers use a combination of multiple structure-prediction techniques including consensus method, multiple-template modeling, template-free modeling and model refinement while our method is a classical single-template-based threading method without any post-threading refinement.

摘要

动机

基于模板的建模的挑战在于识别正确的模板和生成准确的序列-模板比对。同源信息已被证明在检测远程同源物方面非常有效,这一点已被最先进的基于轮廓的 HHpred 方法所证明。然而,当所考虑的蛋白质具有低同源性时,HHpred 的效果并不好。如果我们无法从现有蛋白质序列数据库中为蛋白质获得足够数量的同源信息,那么该蛋白质就是低同源性的。

结果

我们提出了一种用于低同源性蛋白质穿线的基于轮廓熵的评分函数。该方法将对各种蛋白质特征之间的相关性进行建模,并根据可用同源信息的数量确定它们的相对重要性。当所考虑的蛋白质具有低同源性时,我们的方法将更多地依赖结构信息;否则,将依赖同源信息。实验结果表明,我们的穿线方法大大优于最好的基于轮廓的 HHpred 方法和所有顶级 CASP8 服务器,对低同源性蛋白质的性能表现尤为出色。在 CASP8 硬目标测试中,我们的穿线方法也优于所有顶级 CASP8 服务器,但略逊于 Zhang-Server。这是非常显著的,因为 Zhang-Server 和其他顶级 CASP8 服务器使用了多种结构预测技术的组合,包括共识方法、多模板建模、无模板建模和模型细化,而我们的方法是一种经典的单模板穿线方法,没有任何穿线后细化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b20/2881377/6d5904345c34/btq192f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验