Virtua Drug Ltd, Budapest, Hungary.
PLoS One. 2011;6(10):e25815. doi: 10.1371/journal.pone.0025815. Epub 2011 Oct 4.
Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening.
人 P-糖蛋白(P-gp)是一种 ATP 结合盒式多药转运蛋白,通过将药物从细胞中主动排出,使癌细胞对广泛的化疗药物产生耐药性。P-gp 还在限制口服吸收和脑渗透以及促进胆汁和肾脏排泄结构多样的药物方面发挥着关键作用。因此,鉴定药物或新的分子实体是否为 P-gp 底物对于预测药物或药物候选物的药代动力学、疗效、安全性或组织水平至关重要。目前,公开的、可靠的基于计算的预测 P-gp 底物的模型还很少。在这项研究中,我们开发了一种支持向量机(SVM)方法,基于从文献中收集的 197 种已知的 P-gp 底物和非底物的训练数据集,来预测 P-gp 底物和 P-gp-底物相互作用。我们表明,SVM 方法在一个独立的 32 种化合物的外部验证数据集上的预测准确率约为 80%。我们基于 X 射线结构的小鼠 P-gp 模板构建了人 P-gp 的同源模型。我们表明,分子对接到 P-gp 结构成功地预测了 P-gp-配体复合物的几何形状。我们的 SVM 预测和分子对接方法已集成到一个免费的网络服务器(http://pgp.althotas.com)中,该服务器允许用户预测给定的化合物是否是 P-gp 底物,以及它如何与 P-gp 结合和相互作用。该网络服务器的使用可能对合理药物设计和筛选都具有重要意义。