Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria.
Microbiol Spectr. 2018 Mar;6(2). doi: 10.1128/microbiolspec.RWR-0013-2017.
Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In , sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.
为了在营养物质供应波动的不断变化的生境中生存,细菌需要快速适应其代谢能力。为此,碳水化合物代谢受包括涉及小调控 RNA(sRNA)和 RNA 结合蛋白的转录后机制在内的复杂调控网络调控。sRNA 限制了对基质可用性的响应,并为诱导和抑制碳水化合物利用系统设定了阈值或所需时间。碳分解代谢阻遏(CCR)也涉及 sRNA。在 ,sRNA Spot 42 与转录调节因子环腺苷酸(cAMP)-受体蛋白(CRP)合作,当消耗首选糖时,抑制次要碳水化合物利用基因。在假单胞菌中,CCR 完全在转录后水平起作用,涉及 RNA 结合蛋白 Hfq 和诱饵 sRNA CrcZ。此外,sRNA 与碳水化合物的可用性协调通过中心碳水化合物代谢途径的通量。在革兰氏阴性细菌中,RNA 结合蛋白 CsrA 与其同源 sRNA 之间的相互作用响应代谢衍生的信号调节糖酵解和糖异生。当糖酵解碳源充足时,Spot 42 和 cAMP-CRP 共同下调三羧酸循环活性。此外,细菌还利用 sRNA 响应厌氧和铁限制来重新编程碳水化合物代谢。最后,sRNA 还为必需的合成代谢途径提供了内稳态,例如提供细胞包膜前体的己糖胺途径。在这篇综述中,我们讨论了细菌 sRNA 在调节碳源摄取和利用、底物优先级和代谢方面的多种作用。