Suppr超能文献

使用 PL-PatchSurfer2.0 预测 D3R 大挑战中的结合构象和亲和力排序。

Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0.

机构信息

Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA.

Department of Chemistry Education, Sunchon National University, Suncheon, 57922, Republic of Korea.

出版信息

J Comput Aided Mol Des. 2019 Dec;33(12):1083-1094. doi: 10.1007/s10822-019-00222-y. Epub 2019 Sep 10.

Abstract

Computational prediction of protein-ligand interactions is a useful approach that aids the drug discovery process. Two major tasks of computational approaches are to predict the docking pose of a compound in a known binding pocket and to rank compounds in a library according to their predicted binding affinities. There are many computational tools developed in the past decades both in academia and industry. To objectively assess the performance of existing tools, the community has held a blind assessment of computational predictions, the Drug Design Data Resource Grand Challenge. This round, Grand Challenge 4 (GC4), focused on two targets, protein beta-secretase 1 (BACE-1) and cathepsin S (CatS). We participated in GC4 in both BACE-1 and CatS challenges using our molecular surface-based virtual screening method, PL-PatchSurfer2.0. A unique feature of PL-PatchSurfer2.0 is that it uses the three-dimensional Zernike descriptor, a mathematical moment-based shape descriptor, to quantify local shape complementarity between a ligand and a receptor, which properly incorporates molecular flexibility and provides stable affinity assessment for a bound ligand-receptor complex. Since PL-PatchSurfer2.0 does not explicitly build a bound pose of a ligand, we used an external docking program, such as AutoDock Vina, to provide an ensemble of poses, which were then evaluated by PL-PatchSurfer2.0. Here, we provide an overview of our method and report the performance in GC4.

摘要

计算预测蛋白质-配体相互作用是一种有用的方法,可以辅助药物发现过程。计算方法的两个主要任务是预测化合物在已知结合口袋中的对接构象,以及根据预测的结合亲和力对文库中的化合物进行排序。在过去几十年中,学术界和工业界都开发了许多计算工具。为了客观评估现有工具的性能,该领域组织了一次针对计算预测的盲评估,即药物设计数据资源大挑战(Drug Design Data Resource Grand Challenge,DDDR GC)。这一轮,大挑战 4(GC4),重点关注两个靶点,即蛋白β-分泌酶 1(BACE-1)和组织蛋白酶 S(CatS)。我们使用基于分子表面的虚拟筛选方法 PL-PatchSurfer2.0 参加了 GC4 中的 BACE-1 和 CatS 挑战。PL-PatchSurfer2.0 的一个独特特点是,它使用三维 Zernike 描述符,一种基于数学矩的形状描述符,来量化配体和受体之间的局部形状互补性,这适当结合了分子柔性,并为结合的配体-受体复合物提供了稳定的亲和力评估。由于 PL-PatchSurfer2.0 没有明确构建配体的结合构象,因此我们使用外部对接程序(如 AutoDock Vina)来提供一组构象,然后由 PL-PatchSurfer2.0 对其进行评估。在这里,我们提供了我们方法的概述,并报告了在 GC4 中的表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验