Suppr超能文献

扩散加权成像中的超分辨率

Super-resolution in diffusion-weighted imaging.

作者信息

Scherrer Benoit, Gholipour Ali, Warfield Simon K

机构信息

Computational Radiology Laboratory, Department of Radiology Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):124-32. doi: 10.1007/978-3-642-23629-7_16.

Abstract

Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white-matter but suffers from a relatively poor resolution. In this work we propose a super-resolution reconstruction (SRR) technique based on the acquisition of multiple anisotropic orthogonal DWI scans. We address the problem of patient motions by aligning the volumes both in space and in q-space. The SRR is formulated as a maximum a posteriori (MAP) problem. It relies on a volume acquisition model which describes the generation of the acquired scans from the unknown high-resolution image. It enables the introduction of image priors that exploit spatial homogeneity and enables regularized solutions. We detail our resulting SRR optimization procedure and report various experiments including numerical simulations, synthetic SRR scenario and real world SRR scenario. Super-resolution reconstruction in DWI may enable DWI to be performed with unprecedented resolution.

摘要

扩散加权成像(DWI)能够对白质进行非侵入性研究和表征,但分辨率相对较差。在这项工作中,我们提出了一种基于采集多个各向异性正交DWI扫描的超分辨率重建(SRR)技术。我们通过在空间和q空间中对齐体积来解决患者运动问题。SRR被公式化为最大后验(MAP)问题。它依赖于一个体积采集模型,该模型描述了从未知高分辨率图像生成采集到的扫描的过程。它能够引入利用空间均匀性的图像先验,并实现正则化解决方案。我们详细介绍了由此产生的SRR优化过程,并报告了各种实验,包括数值模拟、合成SRR场景和真实世界SRR场景。DWI中的超分辨率重建可能使DWI能够以前所未有的分辨率进行。

相似文献

1
Super-resolution in diffusion-weighted imaging.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):124-32. doi: 10.1007/978-3-642-23629-7_16.
2
3
Super-Resolution Reconstruction of Diffusion-Weighted Images from Distortion Compensated Orthogonal Anisotropic Acquisitions.
Proc Workshop Math Methods Biomed Image Analysis. 2012 Jan;2012:249-254. doi: 10.1109/MMBIA.2012.6164759.
4
5
The development of brain connectivity browser by tractography of QBI.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2094-7. doi: 10.1109/IEMBS.2007.4352734.
6
Feasibility and advantages of diffusion weighted imaging atlas construction in Q-space.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):166-73. doi: 10.1007/978-3-642-23629-7_21.
8
Common Information Enhanced Reconstruction for Accelerated High-resolution Multi-shot Diffusion Imaging.
Magn Reson Imaging. 2019 Oct;62:28-37. doi: 10.1016/j.mri.2019.05.019. Epub 2019 May 17.
9
Interpolation of diffusion weighted imaging datasets.
Neuroimage. 2014 Dec;103:202-213. doi: 10.1016/j.neuroimage.2014.09.005. Epub 2014 Sep 16.
10
In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.
PLoS One. 2015 Jun 25;10(6):e0130133. doi: 10.1371/journal.pone.0130133. eCollection 2015.

引用本文的文献

3
Quantitative MRI Changes During Weekly Ultra-Hypofractionated Prostate Cancer Radiotherapy With Integrated Boost.
Front Oncol. 2019 Dec 4;9:1264. doi: 10.3389/fonc.2019.01264. eCollection 2019.
5
Super-Resolution Reconstruction of Diffusion-Weighted Images from Distortion Compensated Orthogonal Anisotropic Acquisitions.
Proc Workshop Math Methods Biomed Image Analysis. 2012 Jan;2012:249-254. doi: 10.1109/MMBIA.2012.6164759.
6
Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model.
Magn Reson Med. 2015 Feb;73(2):731-9. doi: 10.1002/mrm.25145. Epub 2014 Mar 13.
7
A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy.
IEEE Trans Med Imaging. 2014 Feb;33(2):272-89. doi: 10.1109/TMI.2013.2284014. Epub 2013 Sep 30.
8
RubiX: combining spatial resolutions for Bayesian inference of crossing fibers in diffusion MRI.
IEEE Trans Med Imaging. 2013 Jun;32(6):969-82. doi: 10.1109/TMI.2012.2231873. Epub 2013 Jan 25.
9
Resolution enhancement of diffusion-weighted images by local fiber profiling.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):18-25. doi: 10.1007/978-3-642-33454-2_3.
10
Reconstruction of high-resolution tongue volumes from MRI.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24. doi: 10.1109/TBME.2012.2218246. Epub 2012 Sep 27.

本文引用的文献

1
Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping.
Neuroimage. 2010 Dec;53(4):1233-43. doi: 10.1016/j.neuroimage.2010.07.024. Epub 2010 Jul 17.
2
Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI.
IEEE Trans Med Imaging. 2010 Oct;29(10):1739-58. doi: 10.1109/TMI.2010.2051680. Epub 2010 Jun 7.
3
Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging.
Neuroimage. 2010 Mar;50(1):175-83. doi: 10.1016/j.neuroimage.2009.11.044. Epub 2009 Nov 26.
5
Robust field map generation using a triple-echo acquisition.
J Magn Reson Imaging. 2004 Oct;20(4):730-4. doi: 10.1002/jmri.20158.
6
MRI inter-slice reconstruction using super-resolution.
Magn Reson Imaging. 2002 Jun;20(5):437-46. doi: 10.1016/s0730-725x(02)00511-8.
7
Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging.
Magn Reson Med. 2001 Jan;45(1):29-35. doi: 10.1002/1522-2594(200101)45:1<29::aid-mrm1005>3.0.co;2-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验