Scherrer Benoit, Gholipour Ali, Warfield Simon K
Computational Radiology Laboratory, Department of Radiology Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):124-32. doi: 10.1007/978-3-642-23629-7_16.
Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white-matter but suffers from a relatively poor resolution. In this work we propose a super-resolution reconstruction (SRR) technique based on the acquisition of multiple anisotropic orthogonal DWI scans. We address the problem of patient motions by aligning the volumes both in space and in q-space. The SRR is formulated as a maximum a posteriori (MAP) problem. It relies on a volume acquisition model which describes the generation of the acquired scans from the unknown high-resolution image. It enables the introduction of image priors that exploit spatial homogeneity and enables regularized solutions. We detail our resulting SRR optimization procedure and report various experiments including numerical simulations, synthetic SRR scenario and real world SRR scenario. Super-resolution reconstruction in DWI may enable DWI to be performed with unprecedented resolution.
扩散加权成像(DWI)能够对白质进行非侵入性研究和表征,但分辨率相对较差。在这项工作中,我们提出了一种基于采集多个各向异性正交DWI扫描的超分辨率重建(SRR)技术。我们通过在空间和q空间中对齐体积来解决患者运动问题。SRR被公式化为最大后验(MAP)问题。它依赖于一个体积采集模型,该模型描述了从未知高分辨率图像生成采集到的扫描的过程。它能够引入利用空间均匀性的图像先验,并实现正则化解决方案。我们详细介绍了由此产生的SRR优化过程,并报告了各种实验,包括数值模拟、合成SRR场景和真实世界SRR场景。DWI中的超分辨率重建可能使DWI能够以前所未有的分辨率进行。