Suppr超能文献

Q空间中扩散加权成像图谱构建的可行性与优势

Feasibility and advantages of diffusion weighted imaging atlas construction in Q-space.

作者信息

Dhollander Thijs, Veraart Jelle, Van Hecke Wim, Maes Frederik, Sunaert Stefan, Sijbers Jan, Suetens Paul

机构信息

Medical Imaging Research Center (MIRC), K.U. Leuven, Leuven, Belgium.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):166-73. doi: 10.1007/978-3-642-23629-7_21.

Abstract

In the field of diffusion weighted imaging (DWI), it is common to fit one of many available models to the acquired data. A hybrid diffusion imaging (HYDI) approach even allows to reconstruct different models and measures from a single dataset. Methods for DWI atlas construction (and registration) are as plenty as the number of available models. Therefore, it would be nice if we were able to perform atlas building before model reconstruction. In this work, we present a method for atlas construction of DWI data in q-space: we developed a new multi-subject multi-channel diffeomorphic matching algorithm, which is combined with a recently proposed DWI retransformation method in q-space. We applied our method to HYDI data of 10 healthy subjects. From the resulting atlas, we also reconstructed some advanced models. We hereby demonstrate the feasibility of q-space atlas building, as well as the quality, advantages and possibilities of such an atlas.

摘要

在扩散加权成像(DWI)领域,将众多可用模型之一应用于采集的数据是很常见的。混合扩散成像(HYDI)方法甚至允许从单个数据集中重建不同的模型并进行测量。用于DWI图谱构建(和配准)的方法与可用模型的数量一样多。因此,如果我们能够在模型重建之前进行图谱构建,那就太好了。在这项工作中,我们提出了一种在q空间中构建DWI数据图谱的方法:我们开发了一种新的多主体多通道微分同胚匹配算法,并将其与最近提出的q空间中的DWI重新变换方法相结合。我们将我们的方法应用于10名健康受试者的HYDI数据。从得到的图谱中,我们还重建了一些先进的模型。我们在此证明了q空间图谱构建的可行性,以及这种图谱的质量、优势和可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验