Suppr超能文献

评估工作记忆感兴趣区域皮质折叠模式的规律性和变异性。

Assessing regularity and variability of cortical folding patterns of working memory ROIs.

作者信息

Chen Hanbo, Zhang Tuo, Li Kaiming, Hu Xintao, Guo Lei, Liui Tianming

机构信息

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):318-26. doi: 10.1007/978-3-642-23629-7_39.

Abstract

Cortical folding patterns are believed to be good predictors of brain cytoarchitecture and function. For instance, neuroscientists frequently apply their domain knowledge to identify brain Regions of Interests (ROIs) based on cortical folding patterns. However, quantitative mapping of cortical folding pattern and brain function has not been established yet in the literature. This paper presents our initial effort in quantification of the regularity and variability of cortical folding pattern features for working memory ROIs identified by task-based fMRI, which is widely accepted as a standard approach to localize functionally-specialized brain regions. Specifically, we used a set of shape attributes for each ROI base on multiple resolution decomposition of cortical surfaces, and described the meso-scale folding pattern via a polynomial-based approach. We also applied brain atlas label distribution as a global-scale description of ROI folding pattern. Our studies suggest that there is deep-rooted regularity of cortical folding patterns for certain working memory ROIs across subjects, and folding pattern attributes could be useful for the characterization, recognition and prediction of ROIs, if extracted and applied in a proper way.

摘要

皮质折叠模式被认为是脑神经元结构和功能的良好预测指标。例如,神经科学家经常运用他们的领域知识,基于皮质折叠模式来识别脑兴趣区(ROI)。然而,皮质折叠模式与脑功能的定量映射在文献中尚未确立。本文展示了我们在量化基于任务功能磁共振成像(fMRI)识别出的工作记忆ROI的皮质折叠模式特征的规律性和变异性方面的初步努力,任务功能磁共振成像被广泛认为是定位功能特化脑区的标准方法。具体而言,我们基于皮质表面的多分辨率分解为每个ROI使用了一组形状属性,并通过基于多项式的方法描述中尺度折叠模式。我们还应用脑图谱标签分布作为ROI折叠模式的全局尺度描述。我们的研究表明,跨个体的某些工作记忆ROI的皮质折叠模式存在根深蒂固的规律性,并且如果以适当的方式提取和应用,折叠模式属性可能有助于ROI的表征、识别和预测。

相似文献

3
Predicting functional brain ROIs via fiber shape models.通过纤维形状模型预测功能性脑功能区。
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):42-9. doi: 10.1007/978-3-642-23629-7_6.
7
Model-driven harmonic parameterization of the cortical surface.皮质表面的模型驱动谐波参数化
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):310-7. doi: 10.1007/978-3-642-23629-7_38.
8
A few thoughts on brain ROIs.关于脑 ROI 的几点思考。
Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.

引用本文的文献

2
Visual analytics of brain networks.脑网络的可视化分析。
Neuroimage. 2012 May 15;61(1):82-97. doi: 10.1016/j.neuroimage.2012.02.075. Epub 2012 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验