Suppr超能文献

关于脑 ROI 的几点思考。

A few thoughts on brain ROIs.

机构信息

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA.

出版信息

Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.

Abstract

Quantitative mapping of structural and functional connectivities in the human brain via non-invasive neuroimaging offers an exciting and unique opportunity to understand brain architecture. Because connectivity alterations are widely reported in a variety of brain diseases, assessment of structural and functional connectivities has emerged as a fundamental research area in clinical neuroscience. A fundamental question arises when attempting to map structural and functional connectivities: how to define and localize the best possible Regions of Interests (ROIs) for brain connectivity mapping? Essentially, when mapping brain connectivities, ROIs provide the structural substrates for measuring connectivities within individual brains and for pooling data across populations. Thus, identification of reliable, reproducible and accurate ROIs is critically important for the success of brain connectivity mapping. This paper discusses several major challenges in defining optimal brain ROIs from our perspective and presents a few thoughts on how to deal with those challenges based on recent research work done in our group.

摘要

通过非侵入性神经影像学对人类大脑的结构和功能连接进行定量映射,为理解大脑结构提供了一个令人兴奋且独特的机会。由于连接改变在各种脑部疾病中广泛报道,因此评估结构和功能连接已成为临床神经科学的一个基础研究领域。在尝试绘制结构和功能连接图时,出现了一个基本问题:如何定义和定位大脑连接映射的最佳可能的感兴趣区域 (ROI)?从本质上讲,在绘制大脑连接图时,ROI 为测量个体大脑内的连接以及在人群中汇总数据提供了结构基础。因此,确定可靠、可重复和准确的 ROI 对于大脑连接图绘制的成功至关重要。本文从我们的角度讨论了定义最佳大脑 ROI 时面临的几个主要挑战,并就如何根据我们小组最近的研究工作应对这些挑战提出了一些想法。

相似文献

1
A few thoughts on brain ROIs.关于脑 ROI 的几点思考。
Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.
4
Predicting functional brain ROIs via fiber shape models.通过纤维形状模型预测功能性脑功能区。
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):42-9. doi: 10.1007/978-3-642-23629-7_6.

引用本文的文献

2
Academic achievements and brain volume development in children and adolescents.儿童和青少年的学业成绩与脑容量发育
Cereb Cortex Commun. 2022 Nov 16;3(4):tgac048. doi: 10.1093/texcom/tgac048. eCollection 2022.

本文引用的文献

3
Complex span tasks and hippocampal recruitment during working memory.复杂跨度任务和工作记忆期间的海马体招募。
Neuroimage. 2011 Mar 15;55(2):773-87. doi: 10.1016/j.neuroimage.2010.12.033. Epub 2010 Dec 21.
5
Gyral folding pattern analysis via surface profiling.通过表面描记法进行脑回褶皱模式分析。
Neuroimage. 2010 Oct 1;52(4):1202-14. doi: 10.1016/j.neuroimage.2010.04.263. Epub 2010 May 26.
7
Parametric representation of cortical surface folding based on polynomials.基于多项式的皮质表面折叠的参数化表示
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):184-91. doi: 10.1007/978-3-642-04271-3_23.
8
An automated pipeline for cortical sulcal fundi extraction.皮质脑回底自动提取流水线。
Med Image Anal. 2010 Jun;14(3):343-59. doi: 10.1016/j.media.2010.01.005. Epub 2010 Feb 4.
9
Toward discovery science of human brain function.迈向人类大脑功能的发现科学。
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
10
MR connectomics: Principles and challenges.磁共振连接组学:原理与挑战。
J Neurosci Methods. 2010 Dec 15;194(1):34-45. doi: 10.1016/j.jneumeth.2010.01.014. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验