School of Automation, Northwestern Polytechnical University, China.
Med Image Anal. 2013 Aug;17(6):601-15. doi: 10.1016/j.media.2013.03.007. Epub 2013 Apr 12.
Localization of cortical regions of interests (ROIs) in structural neuroimaging data such as diffusion tensor imaging (DTI) and T1-weighted MRI images has significant importance in basic and clinical neurosciences. However, this problem is considerably challenging due to the lack of quantitative mapping between brain structure and function, which relies on the availability of multimodal training data including benchmark task-based functional MRI (fMRI) images and effective machine learning algorithms. This paper presents a novel joint modeling approach that learns predictive models of ROIs from concurrent task-based fMRI, DTI, and T1-weighted MRI datasets. In particular, the effective generalized multiple kernel learning (GMKL) algorithm and ROI coordinate principal component analysis (PCA) model are employed to infer the intrinsic relationships between anatomical T1-weighted MRI/connectional DTI features and task-based fMRI-derived functional ROIs. Then, these predictive models of cortical ROIs are evaluated by cross-validation studies, independent datasets, and reproducibility studies. Experimental results are promising. We envision that these predictive models can be potentially applied in many scenarios that have only DTI and/or T1-weighted MRI data, but without task-based fMRI data.
在结构神经影像学数据(如弥散张量成像 (DTI) 和 T1 加权 MRI 图像)中对皮质感兴趣区域 (ROI) 进行定位在基础和临床神经科学中具有重要意义。然而,由于大脑结构和功能之间缺乏定量映射,这个问题极具挑战性,这依赖于多模态训练数据的可用性,包括基准任务型功能磁共振成像 (fMRI) 图像和有效的机器学习算法。本文提出了一种新的联合建模方法,从并发任务型 fMRI、DTI 和 T1 加权 MRI 数据集中学习 ROI 的预测模型。具体来说,采用有效的广义多核学习 (GMKL) 算法和 ROI 坐标主成分分析 (PCA) 模型来推断解剖 T1 加权 MRI/连接性 DTI 特征与基于任务 fMRI 衍生的功能 ROI 之间的内在关系。然后,通过交叉验证研究、独立数据集和可重复性研究来评估这些皮质 ROI 的预测模型。实验结果很有前景。我们设想这些预测模型可以潜在地应用于许多只有 DTI 和/或 T1 加权 MRI 数据、但没有任务型 fMRI 数据的场景中。