Suppr超能文献

通过联合建模解剖和连接谱预测皮质 ROI。

Predicting cortical ROIs via joint modeling of anatomical and connectional profiles.

机构信息

School of Automation, Northwestern Polytechnical University, China.

出版信息

Med Image Anal. 2013 Aug;17(6):601-15. doi: 10.1016/j.media.2013.03.007. Epub 2013 Apr 12.

Abstract

Localization of cortical regions of interests (ROIs) in structural neuroimaging data such as diffusion tensor imaging (DTI) and T1-weighted MRI images has significant importance in basic and clinical neurosciences. However, this problem is considerably challenging due to the lack of quantitative mapping between brain structure and function, which relies on the availability of multimodal training data including benchmark task-based functional MRI (fMRI) images and effective machine learning algorithms. This paper presents a novel joint modeling approach that learns predictive models of ROIs from concurrent task-based fMRI, DTI, and T1-weighted MRI datasets. In particular, the effective generalized multiple kernel learning (GMKL) algorithm and ROI coordinate principal component analysis (PCA) model are employed to infer the intrinsic relationships between anatomical T1-weighted MRI/connectional DTI features and task-based fMRI-derived functional ROIs. Then, these predictive models of cortical ROIs are evaluated by cross-validation studies, independent datasets, and reproducibility studies. Experimental results are promising. We envision that these predictive models can be potentially applied in many scenarios that have only DTI and/or T1-weighted MRI data, but without task-based fMRI data.

摘要

在结构神经影像学数据(如弥散张量成像 (DTI) 和 T1 加权 MRI 图像)中对皮质感兴趣区域 (ROI) 进行定位在基础和临床神经科学中具有重要意义。然而,由于大脑结构和功能之间缺乏定量映射,这个问题极具挑战性,这依赖于多模态训练数据的可用性,包括基准任务型功能磁共振成像 (fMRI) 图像和有效的机器学习算法。本文提出了一种新的联合建模方法,从并发任务型 fMRI、DTI 和 T1 加权 MRI 数据集中学习 ROI 的预测模型。具体来说,采用有效的广义多核学习 (GMKL) 算法和 ROI 坐标主成分分析 (PCA) 模型来推断解剖 T1 加权 MRI/连接性 DTI 特征与基于任务 fMRI 衍生的功能 ROI 之间的内在关系。然后,通过交叉验证研究、独立数据集和可重复性研究来评估这些皮质 ROI 的预测模型。实验结果很有前景。我们设想这些预测模型可以潜在地应用于许多只有 DTI 和/或 T1 加权 MRI 数据、但没有任务型 fMRI 数据的场景中。

相似文献

10
Predicting functional brain ROIs via fiber shape models.通过纤维形状模型预测功能性脑功能区。
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):42-9. doi: 10.1007/978-3-642-23629-7_6.

引用本文的文献

1
Identifying Cross-individual Correspondences of 3-hinge Gyri.识别三铰链脑回的个体间对应关系。
Med Image Anal. 2020 Jul;63:101700. doi: 10.1016/j.media.2020.101700. Epub 2020 Apr 13.

本文引用的文献

3
Visual analytics of brain networks.脑网络的可视化分析。
Neuroimage. 2012 May 15;61(1):82-97. doi: 10.1016/j.neuroimage.2012.02.075. Epub 2012 Mar 5.
7
Discovering dense and consistent landmarks in the brain.在大脑中发现密集且一致的地标。
Inf Process Med Imaging. 2011;22:97-110. doi: 10.1007/978-3-642-22092-0_9.
9
A few thoughts on brain ROIs.关于脑 ROI 的几点思考。
Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验