Suppr超能文献

好的,我将用简体中文为你输出这段译文。 部分硝化-厌氧氨氧化工艺中的 N2O 排放及厌氧氨氧化颗粒中 N2O 排放关键生物过程的鉴定。

N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules.

机构信息

Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.

出版信息

Water Res. 2011 Dec 1;45(19):6461-70. doi: 10.1016/j.watres.2011.09.040. Epub 2011 Sep 29.

Abstract

Emission of nitrous oxide (N(2)O) during biological wastewater treatment is of growing concern. The emission of N(2)O from a lab-scale two-reactor partial nitrification (PN)-anammox reactor was therefore determined in this study. The average emission of N(2)O from the PN and anammox process was 4.0±1.5% (9.6±3.2% of the removed nitrogen) and 0.1±0.07% (0.14±0.09% of the removed nitrogen) of the incoming nitrogen load, respectively. Thus, a larger part (97.5%) of N(2)O was emitted from the PN reactor. The total amount of N(2)O emission from the PN reactor was correlated to nitrite (NO(2)(-)) concentration in the PN effluent rather than DO concentration. In addition, further studies were performed to indentify a key biological process that is responsible for N(2)O emission from the anammox process (i.e., granules). In order to characterize N(2)O emission from the anammox granules, the in situ N(2)O production rate was determined by using microelectrodes for the first time, which was related to the spatial organization of microbial community of the granule as determined by fluorescence in situ hybridization (FISH). Microelectrode measurement revealed that the active N(2)O production zone was located in the inner part of the anammox granule, whereas the active ammonium consumption zone was located above the N(2)O production zone. Anammox bacteria were present throughout the granule, whereas ammonium-oxidizing bacteria (AOB) were restricted to only the granule surface. In addition, addition of penicillin G that inhibits most of the heterotrophic denitrifiers and AOB completely inhibited N(2)O production in batch experiments. Based on these results obtained, denitrification by putative heterotrophic denitrifiers present in the inner part of the granule was considered the most probable cause of N(2)O emission from the anammox reactor (i.e., granules).

摘要

在生物废水处理过程中,一氧化二氮(N2O)的排放引起了越来越多的关注。因此,本研究测定了实验室规模的两段式部分硝化(PN)-厌氧氨氧化反应器中 N2O 的排放情况。PN 和厌氧氨氧化过程的 N2O 平均排放量分别为 4.0±1.5%(去除氮的 9.6±3.2%)和 0.1±0.07%(去除氮的 0.14±0.09%)。因此,更大一部分(97.5%)的 N2O 是从 PN 反应器中排放的。PN 反应器中 N2O 的总排放量与 PN 出水中的亚硝酸盐(NO2--)浓度而非 DO 浓度相关。此外,还进行了进一步的研究,以确定导致厌氧氨氧化过程中 N2O 排放的关键生物过程(即颗粒)。为了表征厌氧氨氧化颗粒中 N2O 的排放情况,首次使用微电极测定了原位 N2O 生成速率,该速率与颗粒中微生物群落的空间组织有关,该空间组织由荧光原位杂交(FISH)确定。微电极测量结果表明,活性 N2O 生成区位于厌氧氨氧化颗粒的内部,而活性氨消耗区位于 N2O 生成区上方。整个颗粒中都存在厌氧氨氧化细菌,而氨氧化细菌(AOB)仅存在于颗粒表面。此外,在批处理实验中,添加青霉素 G 可抑制大多数异养反硝化菌和 AOB,完全抑制 N2O 的生成。基于这些结果,推测颗粒内部存在的异养反硝化菌的反硝化作用是导致厌氧氨氧化反应器(即颗粒)中 N2O 排放的最可能原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验