Roberts G L, Lucamarini M, Yuan Z L, Dynes J F, Comandar L C, Sharpe A W, Shields A J, Curty M, Puthoor I V, Andersson E
Toshiba Research Europe Ltd, 208 Cambridge Science Park, Cambridge, CB4 0GZ, UK.
Cambridge University Engineering Department, Cambridge, CB3 0FA, UK.
Nat Commun. 2017 Oct 23;8(1):1098. doi: 10.1038/s41467-017-01245-5.
The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.
量子网络的发展对于实现实用且安全的电信至关重要。这些网络需要在多方之间以信息理论安全性签署和分发信息,这既需要量子数字签名(QDS)又需要量子密钥分发(QKD)。在此,我们介绍并通过实验实现了一种量子网络架构,其中节点使用最少数量的物理链路实现全连接。网络的中央节点既可以充当完全不可信的中继,通过最近引入的测量设备无关(MDI)-QKD连接终端用户,也可以充当通过QKD直接与终端用户通信的可信接收方。利用这个网络,我们进行了由MDI-QKD介导的QDS的原理验证演示。为此,我们设计了一种高效协议,从同一数据块中提取多个签名,从而减少样本中的统计波动,并在有限规模场景中极大地提高最终的QDS速率。