Suppr超能文献

在蛋白质结构预测技术关键评估(CASP)12中对模型准确性估计的评估。

Assessment of model accuracy estimations in CASP12.

作者信息

Kryshtafovych Andriy, Monastyrskyy Bohdan, Fidelis Krzysztof, Schwede Torsten, Tramontano Anna

机构信息

Genome Center, University of California, Davis, California.

Biozentrum, University of Basel, Basel, Switzerland.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl 1):345-360. doi: 10.1002/prot.25371. Epub 2017 Sep 8.

Abstract

The record high 42 model accuracy estimation methods were tested in CASP12. The paper presents results of the assessment of these methods in the whole-model and per-residue accuracy modes. Scores from four different model evaluation packages were used as the "ground truth" for assessing accuracy of methods' estimates. They include a rigid-body score-GDT_TS, and three local-structure based scores-LDDT, CAD and SphereGrinder. The ability of methods to identify best models from among several available, predict model's absolute accuracy score, distinguish between good and bad models, predict accuracy of the coordinate error self-estimates, and discriminate between reliable and unreliable regions in the models was assessed. Single-model methods advanced to the point where they are better than clustering methods in picking the best models from decoy sets. On the other hand, consensus methods, taking advantage of the availability of large number of models for the same target protein, are still better in distinguishing between good and bad models and predicting local accuracy of models. The best accuracy estimation methods were shown to perform better with respect to the frozen in time reference clustering method and the results of the best method in the corresponding class of methods from the previous CASP. Top performing single-model methods were shown to do better than all but three CASP12 tertiary structure predictors when evaluated as model selectors.

摘要

在蛋白质结构预测关键评估第12轮(CASP12)中测试了创纪录的42种模型准确性估计方法。本文展示了这些方法在全模型和每个残基准确性模式下的评估结果。来自四个不同模型评估软件包的分数被用作评估方法估计准确性的“基准事实”。它们包括一个刚体分数——全局距离测试总分(GDT_TS),以及三个基于局部结构的分数——线性离散密度(LDDT)、坐标原子距离(CAD)和球形研磨器(SphereGrinder)。评估了这些方法从多个可用模型中识别最佳模型、预测模型的绝对准确性分数、区分好模型和坏模型、预测坐标误差自我估计准确性以及区分模型中可靠和不可靠区域的能力。单模型方法已经发展到在从诱饵集中挑选最佳模型方面比聚类方法更好的程度。另一方面,共识方法利用了针对同一目标蛋白有大量模型这一条件,在区分好模型和坏模型以及预测模型的局部准确性方面仍然更胜一筹。结果表明,最佳准确性估计方法相对于固定时间参考聚类方法以及上一轮CASP中相应方法类别里最佳方法的结果表现更佳。当作为模型选择器进行评估时,表现最佳的单模型方法被证明比除了三个CASP12三级结构预测器之外的所有方法都要好。

相似文献

4
Estimation of model accuracy in CASP13.CASP13 模型精度估计。
Proteins. 2019 Dec;87(12):1361-1377. doi: 10.1002/prot.25767. Epub 2019 Jul 16.

引用本文的文献

3
New prediction categories in CASP15.CASP15 中的新预测类别。
Proteins. 2023 Dec;91(12):1550-1557. doi: 10.1002/prot.26515. Epub 2023 Jun 12.
6
Modeling SARS-CoV-2 proteins in the CASP-commons experiment.在 CASP-commons 实验中模拟 SARS-CoV-2 蛋白。
Proteins. 2021 Dec;89(12):1987-1996. doi: 10.1002/prot.26231. Epub 2021 Oct 5.

本文引用的文献

1
CASP11 statistics and the prediction center evaluation system.半胱天冬酶11统计数据及预测中心评估系统
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):15-9. doi: 10.1002/prot.25005. Epub 2016 Mar 9.
7
Evaluation of model quality predictions in CASP9.CASP9 模型质量预测评估。
Proteins. 2011;79 Suppl 10(Suppl 10):91-106. doi: 10.1002/prot.23180. Epub 2011 Oct 14.
8
Evaluation of CASP8 model quality predictions.CASP8 模型质量预测评估。
Proteins. 2009;77 Suppl 9:157-66. doi: 10.1002/prot.22534.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验