Suppr超能文献

一种基于基因本体论的量化基因集功能关联的新方法。

A novel method to quantify gene set functional association based on gene ontology.

机构信息

College of Bioinformatics Science and Technology and Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, People's Republic of China.

出版信息

J R Soc Interface. 2012 May 7;9(70):1063-72. doi: 10.1098/rsif.2011.0551. Epub 2011 Oct 13.

Abstract

Numerous gene sets have been used as molecular signatures for exploring the genetic basis of complex disorders. These gene sets are distinct but related to each other in many cases; therefore, efforts have been made to compare gene sets for studies such as those evaluating the reproducibility of different experiments. Comparison in terms of biological function has been demonstrated to be helpful to biologists. We improved the measurement of semantic similarity to quantify the functional association between gene sets in the context of gene ontology and developed a web toolkit named Gene Set Functional Similarity (GSFS; http://bioinfo.hrbmu.edu.cn/GSFS). Validation based on protein complexes for which the functional associations are known demonstrated that the GSFS scores tend to be correlated with sequence similarity scores and that complexes with high GSFS scores tend to be involved in the same functional catalogue. Compared with the pairwise method and the annotation method, the GSFS shows better discrimination and more accurately reflects the known functional catalogues shared between complexes. Case studies comparing differentially expressed genes of prostate tumour samples from different microarray platforms and identifying coronary heart disease susceptibility pathways revealed that the method could contribute to future studies exploring the molecular basis of complex disorders.

摘要

许多基因集被用作探索复杂疾病遗传基础的分子特征。这些基因集是不同的,但在许多情况下彼此相关;因此,人们一直在努力比较基因集,例如评估不同实验的可重复性的研究。在生物学功能方面的比较已被证明对生物学家有帮助。我们改进了语义相似性的测量方法,以量化基因本体论上下文中基因集之间的功能关联,并开发了一个名为基因集功能相似性(GSFS;http://bioinfo.hrbmu.edu.cn/GSFS)的网络工具包。基于功能关联已知的蛋白质复合物的验证表明,GSFS 得分往往与序列相似性得分相关,并且具有高 GSFS 得分的复合物往往参与相同的功能目录。与成对方法和注释方法相比,GSFS 具有更好的区分能力,并且更准确地反映了复合物之间已知的功能目录。通过比较来自不同微阵列平台的前列腺肿瘤样本的差异表达基因,并确定冠心病易感性途径的案例研究表明,该方法可以为未来探索复杂疾病的分子基础的研究做出贡献。

相似文献

6

引用本文的文献

本文引用的文献

2
Application of gene ontology to gene identification.基因本体论在基因识别中的应用。
Methods Mol Biol. 2011;760:141-57. doi: 10.1007/978-1-61779-176-5_9.
4
Martini: using literature keywords to compare gene sets.马丁尼:使用文献关键词比较基因集。
Nucleic Acids Res. 2010 Jan;38(1):26-38. doi: 10.1093/nar/gkp876. Epub 2009 Oct 25.
6
Statistical methods for gene set co-expression analysis.基因集共表达分析的统计方法。
Bioinformatics. 2009 Nov 1;25(21):2780-6. doi: 10.1093/bioinformatics/btp502. Epub 2009 Aug 18.
8
Semantic similarity in biomedical ontologies.生物医学本体中的语义相似性。
PLoS Comput Biol. 2009 Jul;5(7):e1000443. doi: 10.1371/journal.pcbi.1000443. Epub 2009 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验