Department of Microbiology I-Immunology, Facultad de Medicina, Universidad Complutense de Madrid, Ave Complutense S/N, Madrid 28040, Spain.
FEBS Lett. 2011 Nov 4;585(21):3478-84. doi: 10.1016/j.febslet.2011.10.007. Epub 2011 Oct 10.
Functional characterization of proteins belonging to the MHC I superfamily involves knowing their cognate ligands, which can be peptides, lipids or none. However, the experimental identification of these ligands is not an easy task and generally requires some a priori knowledge of their chemical nature (ligand-type specificity). Here, we trained k-nearest neighbor and support vector machine classifiers that predict the ligand-type specificity MHC I proteins with great accuracy. Moreover, we applied these classifiers to human and mouse MHC I proteins of uncharacterized ligands, obtaining some results that can be instrumental to unravel the function of these proteins.
功能表征属于 MHC I 超家族的蛋白质需要知道它们的同源配体,这些配体可以是肽、脂类或非肽类物质。然而,这些配体的实验鉴定并非易事,通常需要对其化学性质(配体类型特异性)有一定的先验知识。在这里,我们训练了 k-最近邻和支持向量机分类器,可以非常准确地预测配体类型特异性 MHC I 蛋白。此外,我们将这些分类器应用于人类和小鼠 MHC I 蛋白的未鉴定配体,获得了一些可能有助于阐明这些蛋白质功能的结果。