Pedemonte Stefano, Bousse Alexandre, Hutton Brian F, Arridge Simon, Ourselin Sebastien
The Centre for Medial Image Computing, UCL, London, United Kingdom.
Med Image Comput Comput Assist Interv. 2011;14(Pt 1):581-8. doi: 10.1007/978-3-642-23623-5_73.
We introduce a 4-dimensional joint generative probabilistic model for estimation of activity in a PET/MRI imaging system. The model is based on a mixture of Gaussians, relating time dependent activity and MRI image intensity to a hidden static variable, allowing one to estimate jointly activity, the parameters that capture the interdependence of the two images and motion parameters. An iterative algorithm for optimisation of the model is described. Noisy simulation data, modeling 3-D patient head movements, is obtained with realistic PET and MRI simulators and with a brain phantom from the BrainWeb database. Joint estimation of activity and motion parameters within the same framework allows us to use information from the MRI images to improve the activity estimate in terms of noise and recovery.
我们引入了一种用于估计PET/MRI成像系统中活动的四维联合生成概率模型。该模型基于高斯混合模型,将随时间变化的活动和MRI图像强度与一个隐藏的静态变量相关联,从而能够联合估计活动、捕捉两张图像相互依赖性的参数以及运动参数。文中描述了一种用于优化该模型的迭代算法。使用逼真的PET和MRI模拟器以及来自BrainWeb数据库的脑模体,获取了模拟三维患者头部运动的噪声模拟数据。在同一框架内对活动和运动参数进行联合估计,使我们能够利用MRI图像中的信息,在噪声和恢复方面改进活动估计。