Suppr超能文献

基于神经网络方法的低剂量发射断层成像重建后去噪综述

A Review on Low-Dose Emission Tomography Post-Reconstruction Denoising with Neural Network Approaches.

作者信息

Bousse Alexandre, Kandarpa Venkata Sai Sundar, Shi Kuangyu, Gong Kuang, Lee Jae Sung, Liu Chi, Visvikis Dimitris

机构信息

Univ. Brest, LATIM, INSERM UMR 1101, 29238 Brest, France.

Lab for Artificial Intelligence & Translational Theranostics, Dept. Nuclear Medicine, Inselspital, University of Bern, 3010 Bern, Switzerland.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):333-347. doi: 10.1109/trpms.2023.3349194. Epub 2024 Jan 2.

Abstract

Low-dose emission tomography (ET) plays a crucial role in medical imaging, enabling the acquisition of functional information for various biological processes while minimizing the patient dose. However, the inherent randomness in the photon counting process is a source of noise which is amplified low-dose ET. This review article provides an overview of existing post-processing techniques, with an emphasis on deep neural network (NN) approaches. Furthermore, we explore future directions in the field of NN-based low-dose ET. This comprehensive examination sheds light on the potential of deep learning in enhancing the quality and resolution of low-dose ET images, ultimately advancing the field of medical imaging.

摘要

低剂量发射断层扫描(ET)在医学成像中起着至关重要的作用,它能够获取各种生物过程的功能信息,同时将患者剂量降至最低。然而,光子计数过程中固有的随机性是噪声的一个来源,在低剂量ET中这种噪声会被放大。这篇综述文章概述了现有的后处理技术,重点介绍了深度神经网络(NN)方法。此外,我们还探讨了基于NN的低剂量ET领域的未来发展方向。这一全面的研究揭示了深度学习在提高低剂量ET图像质量和分辨率方面的潜力,最终推动医学成像领域的发展。

相似文献

本文引用的文献

4
PET image denoising based on denoising diffusion probabilistic model.基于去噪扩散概率模型的 PET 图像去噪。
Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):358-368. doi: 10.1007/s00259-023-06417-8. Epub 2023 Oct 3.
5
Diffusion models in medical imaging: A comprehensive survey.扩散模型在医学成像中的应用:全面综述。
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验